Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce an...
Acoustic fLow InteractioN over sound absorbing surfaces: effects on ImpedaNce and draG
The lack of fundamental knowledge of the interaction between an acoustic wave and a turbulent boundary layer grazing an acoustically treated surface, such as an acoustic liner, is the cause of unexpected and unphysical results fou...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
DPI2009-13613
CARACTERIZACION DEL COMPORTAMIENTO AEROACUSTICO DE PERFILES...
126K€
Cerrado
TEC2016-81107-P
GENERACION COMPUTACIONAL DE VOZ EXPRESIVA
121K€
Cerrado
DPI2011-25419
CARACTERIZACION Y PREDICCION DE LA GENERACION AERODINAMICA D...
61K€
Cerrado
FIS2009-08821
ESTRUCTURAS COHERENTES Y TURBULENCIA EN DOMINIOS SIMPLES
119K€
Cerrado
BES-2010-040519
CARACTERIZACION DEL COMPORTAMIENTO AEROACUSTICO DE PERFILES...
43K€
Cerrado
EEBB-I-12-04653
CARACTERIZACION DEL COMPORTAMIENTO AEROACUSTICO DE PERFILES...
5K€
Cerrado
Información proyecto LINING
Duración del proyecto: 60 meses
Fecha Inicio: 2023-03-01
Fecha Fin: 2028-03-31
Líder del proyecto
POLITECNICO DI TORINO
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Descripción del proyecto
The lack of fundamental knowledge of the interaction between an acoustic wave and a turbulent boundary layer grazing an acoustically treated surface, such as an acoustic liner, is the cause of unexpected and unphysical results found when performing the acoustic characterization of the sound absorbing surface with inverse eduction methods. This is because, in this field, acoustic and aerodynamic have never been fully coupled.
To fill this knowledge gap, the acoustic and hydrodynamic velocities near an acoustically treated surface must be measured. Since it cannot be done only with state-of-the-art experiments, because of hardware and field-of-view limitations, I propose to complement experiments with scale-resolved high-fidelity numerical simulations based on the lattice-Boltzmann very-large-eddy simulation method.
Numerical results will be used to explain the physics of the acoustic-flow interaction. Advanced data analysis methodologies will be developed and applied to separate the acoustic-induced velocity near the wall from the hydrodynamic one. At the same time, the numerical database will be used to compare inverse methods, employed to acoustically characterize the sound absorbing surfaces, in order to explain the physical reasons behind the unexpected results, and propose physics-based corrections. Furthermore, by describing the flow-acoustic interaction, it will be possible to model and predict the drag increase caused by the coupling between the acoustic-induced velocity and the free-stream one.
My description of the flow-acoustic interaction will solve the scientific debate about the unexpected results and pave the way towards future broadband low-noise low-drag acoustic meta-surfaces to increase propulsion efficiency and reduce noise of future, more sustainable, aircraft engines.