AcceLerated PreCision Tests of Lepton UniversAlity
The Standard Model (SM) of particle physics describes most fundamental phenomena extraordinarily well, but unresolved questions such as the matter-antimatter asymmetry remain. New Physics (NP), able to resolve these questions, has...
The Standard Model (SM) of particle physics describes most fundamental phenomena extraordinarily well, but unresolved questions such as the matter-antimatter asymmetry remain. New Physics (NP), able to resolve these questions, has not been found in direct searches yet, so it must be either extremely rare or manifest at higher energies that can only be probed by precision SM measurements.
Lepton flavor universality (LFU) is one of the most precise predictions of the SM, but discrepancies with measurements have emerged in decays of B hadrons.
Unambiguously establishing the presence of LFU breaking effects is therefore one of the most vital and timely challenges in HEP. However the current experimental precision is not sufficient for a discovery due to the limited size of data sets.
Therefore, the LHCb experiment at CERN is being upgraded to measure B hadrons at higher rates. But at these rates, efficient selection of signals requires exceptional computing demands.
CPU-based systems no longer meet these demands, so real-time selection constitutes a major bottleneck. The Allen system, that I have pioneered and led from proof-of-concept to the new LHCb baseline implementation, solves this by using graphics processing units, and even provides a large head-room in computing resources.
With ALPaCA I will build a team to demonstrate that the experimental precision of LFU observables required to establish the presence of NP is reached by using accelerated real-time analysis systems. We will:
1. Enhance Allen using the extra computing resources to increase the data samples for LFU observables by a factor two.
2. Test LFU in ratios of branching fractions of b -> c l nu transitions with electrons for the first time at LHCb.
3. Characterize NP by measuring angular observables of b -> c tau nu transitions at LHCb.
4. Direct the design of future experiments and facilities by unlocking new computing potential.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.