Some of the most extensively studied objects at the intersection of number theory and algebraic geometry are abelian varieties, which are projective varieties whose points form a group.
The main objective of the project is to conc...
ver más
Descripción del proyecto
Some of the most extensively studied objects at the intersection of number theory and algebraic geometry are abelian varieties, which are projective varieties whose points form a group.
The main objective of the project is to concretely represent abelian varieties defined over a finite field and classify them up to isomorphism, together with their polarizations.
The main goal has been achieved in previous years by work of the Researcher, Supervisor and collaborators in several cases, which enjoy two properties: the varieties admit canonical liftings and the p-divisible groups do not play a special role in the classification.
The project deals with the cases where these crucial properties do not hold, making them theoretically more complicated to grasp, but also more interesting.
Achieving the objective will have several consequences. Firstly, we will obtain an efficient way to represent abelian varieties over finite fields, overcoming the facts that equations are too cumbersome, already in dimension 2, and that Jacobian varieties give a complete description only in low dimension and with certain kind of polarizations. Secondly, we will fill some important gaps in our current understanding of many invariants attached to the abelian varieties, like the p-rank or the Newton polygon. Third, the project will pave the way to: compute the cohomology of moduli spaces of the abelian varieties by interpolating our point-counts over finite fields; shed light one the set of conjectures connecting automorphic forms and representation theory usually known as the Langlands program; study isogeny graphs of abelian varieties over finite fields, which have the potential of being useful in (post-quantum-)cryptography; understand properties of algebraic-geometric codes via Jacobians. Note that the last two applications could have significant impact on making digital communications more secure and reliable, and hence considerably affect our society and economy.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.