A Wearable Sensor for Hormones Based on a Native Microbial Sensing
Connected devices that monitor human biology in real-time represent the next frontier in biosensors. Monitoring hormones is of significant interest as hormones play critical roles in multiple physiological processes including str...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto SENSHOR
Duración del proyecto: 39 meses
Fecha Inicio: 2017-03-06
Fecha Fin: 2020-07-03
Líder del proyecto
UNIVERSITE DE BORDEAUX
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
265K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Connected devices that monitor human biology in real-time represent the next frontier in biosensors. Monitoring hormones is of significant interest as hormones play critical roles in multiple physiological processes including stress adaptation, blood pressure control, reproductive rhythms, and body odor. However, the real-time monitoring of hormones is challenging from a biology, chemistry, and engineering perspective, insulin detection being the one notable success. This project proposes to design a novel wearable device to sense estradiol (through sweat), a hormone responsible for fertility issues and mood disorders in women. This project is highly innovative and ambitious since it combines microbial genetics and protein identification, new polymer and nanoparticles compositions, and a novel sensor design. The wearable device (i.e., bracelet) will contain an optical-to-electrical interface for recording the fluorescence output of a biosensor, based on estradiol sensitive transcription factor isolated from a microbial organism. The biosensor is composed of biopolymers (dendrimers and polypeptides nanoparticles) functionalized with fluorescent molecular beacons (MB) and a hormone-sensitive transcription factor. Without the hormone, the two fluorescent entities of the MB are linked by the protein and no signal is emitted because of fluorescence resonance energy transfer (FRET), while in the presence of estradiol, the MB separate and a fluorescent signal is emitted. The project will be conducted in two international prestigious laboratories in France and in the USA to give to the applicant the best interdisciplinary scientific environment, and ensure the ultimate success of this project. The applicant will be the main spokesperson and lead investigator of the project. This international exposure and this fellowship will provide the applicant a unique and multidisciplinary profile, while facilitating her future academic career as a researcher in France.