A Universal Supramolecular Approach toward Organic Electronic Materials and Nano...
A Universal Supramolecular Approach toward Organic Electronic Materials and Nanostructured Carbonaceous Materials from Molecular Precursors
Research in novel energy sources, efficient energy storage, sustainable chemical technology, and smaller microelectronic devices with interfaces for biological systems are among the current challenges in science and technology. Ca...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Research in novel energy sources, efficient energy storage, sustainable chemical technology, and smaller microelectronic devices with interfaces for biological systems are among the current challenges in science and technology. Carbonaceous materials and organic electronic materials which speak the language of biomaterials will play a central role in the search for possible solutions. We aim to develop a universal supramolecular approach for their preparation and propose to develop synthetic pathways toward conjugated oligomers carrying hydrogen-bonded substituents, such as oligopeptide-polymer conjugates. These substituents serve as a supramolecular motif promoting the aggregation of the molecular precursors into single crystals, thin films, or soluble one-dimensional nanostructures. The obtained ordered phases or nanostructures from conjugated molecules themselves are highly interesting candidates for applications in photovoltaic, light-emitting, or semiconducting devices. Related nanostructures from oligo(phenylene)s or oligo(ethynylene)s will serve as reactive molecular precursors for a conversion into soluble graphene ribbon nanostructures. Finally, this approach will be extended toward the preparation of carbonaceous materials from amphiphilic oligo(ethynylene)s as energy-rich molecular precursors under preservation of the mesoscopic morphology, surface chemistry, and carbon microstructure. The obtained materials are highly interesting with respect to ion or hydrogen storage, and transition-metal-free catalysis. Hence, this research project aims to combine synthetic organic chemistry, supramolecular chemistry, and materials science in order to both deliver novel materials and improve our understanding in utilizing supramolecular-synthetic methods in their preparation.