A two-photon compound fiberscope to study the brain at all spatial and temporal...
Understanding how neuronal circuits process information is a major scientific challenge, which demands new tools to address the complexity of the brain in animals during natural functioning. Two-photon (2P) microscopy, combined wi...
Understanding how neuronal circuits process information is a major scientific challenge, which demands new tools to address the complexity of the brain in animals during natural functioning. Two-photon (2P) microscopy, combined with optogenetics, has revolutionized neuroscience thanks to the possibility to image and photostimulate neuronal activity with light, but suffers from important limitations.
To determine how perception and behaviour arise, we need to record and manipulate at will the activity of every neuron in a circuit in freely behaving animals. 2P microscopy is on the contrary mainly performed in head-fixed animals, which poses a clear limitation to the study of natural behaviour. At the same time, understanding how different brain areas exchange information requires to maintain single cell spatial resolution (~ 15 μm) and temporal resolutions compatible with the propagation of neuronal signals (~ 1 ms) over ultra large spatial scales (5 mm), which is today completely out of reach for 2P microscopy.
In this project I will overcome these limitations and develop the 2P compound fiberscope, a new optical technique based on the unique combination of multiple optical fibers and optimal spatial and temporal beam shaping approaches, which will completely change the way we study neuronal circuits thanks to two main technologies. 1) A flexible 2P micro-endoscope to image and photostimulate neurons in freely moving animals, which will give access to entire brain regions with the highest imaging and manipulation efficiency and the fastest acquisition speed. 2) The first 2P mesoscope specifically conceived to image and manipulate neuronal activity with single cell resolution across the majority of the mouse cortex on temporal scales compatible with the propagation of neuronal signals. These technologies will pave the way for a real understanding of how neuronal circuits drive behaviour, and how different brain regions communicate to process neuronal informationver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.