A major challenge in evolutionary biology is to quantify the processes and mechanisms by which populations adapt to new environments. In particular, the role of epistasis, which is the genetic-background dependent effect of mutati...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EvolInfome
The sources of historical signal in the genomes of birds
219K€
Cerrado
HYBRID-GENES
The Repeatability of Genetic Architecture
198K€
Cerrado
ODOGEN
Comparative genomics and gene expression profile of sexual a...
231K€
Cerrado
Información proyecto FIT2GO
Duración del proyecto: 69 meses
Fecha Inicio: 2018-11-19
Fecha Fin: 2024-08-31
Líder del proyecto
UNIVERSITAET BERN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A major challenge in evolutionary biology is to quantify the processes and mechanisms by which populations adapt to new environments. In particular, the role of epistasis, which is the genetic-background dependent effect of mutations, and the constraints it imposes on adaptation, has been contentious for decades. This question can be approached using the concept of a fitness landscape: a map of genotypes or phenotypes to fitness, which dictates the dynamics and the possible paths towards increased reproductive success. This analogy has inspired a large body of theoretical work, in which various models of fitness landscapes have been proposed and analysed. Only recently, novel experimental approaches and advances in sequencing technologies have provided us with large empirical fitness landscapes at impressive resolution, which call for the evaluation of the related theory.
The aim of this proposal is to build on the theory of fitness landscapes to quantify epistasis across levels of biological organization and across environments, and to study its impact on the population genetics of adaptation and hybridization. Each work package involves classical theoretical modelling, statistical inference and method development, and data analysis and interpretation; a combination of approaches for which my research group has strong expertise. In addition, we will perform experimental evolution in Escherichia coli and influenza to test hypotheses related to the change of fitness effects across environments, and to adaptation by means of highly epistatic mutations. We will specifically apply our methods to evaluate the potential for predicting routes to drug resistance in pathogens. The long-term goal lies in the development of a modeling and inference framework that utilizes fitness landscape theory to infer the ecological history of a genome, which may ultimately allow for a prediction of its future adaptive potential.