A stem cell based approach for modelling implantation in vitro
The first physical contact between the embryo and the uterus is a complex and timely coordinated process, which is crucial for positive pregnancy outcome. During that process of implantation, the embryo attaches and invades to nes...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PTA2023-022862-I
Servicio en cultivos celulares pluripotentes, análisis y cri...
52K€
Cerrado
BIOCARD
Deep BIOmodeling of human CARDiogenesis
2M€
Cerrado
ARCH
AGE RELATED CHANGES IN HEMATOPOIESIS
4M€
Cerrado
AiPSC
AI-powered platform for autologous iPSC manufacturing
4M€
Cerrado
PTQ-10-03694
INTROD. A LAS TÉCN. DE RT-qPCR Y CITOMETRÍA DE FLUJO. APLIC....
47K€
Cerrado
UltraRamanomics
High Content Microanalytical Ramanomics for Ultraquantitativ...
213K€
Cerrado
Información proyecto IMPLANTATION
Duración del proyecto: 40 meses
Fecha Inicio: 2021-04-30
Fecha Fin: 2024-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The first physical contact between the embryo and the uterus is a complex and timely coordinated process, which is crucial for positive pregnancy outcome. During that process of implantation, the embryo attaches and invades to nest into the uterus. Managing embryo implantation has wide implications for public health, including treating infertility (e.g., improving IVF outcomes) and for family planning (improving contraception). However, the tiny size of the embryo and inaccessibility into the womb make implantation a true black box in developmental biology. Three technological breakthroughs, i.e., single cell sequencing, endometrial organoids and blastoid technologies, now made it possible to deeply and finely investigate implantation. Here, I aim at leveraging these technologies to create a stem cell-based platform to model the blastocyst-uterus interaction and to reveal molecular mechanisms mediating implantation. This platform will be amenable to high-throughput screening, gene editing, and live imaging, to identify the molecular regulators of implantation. If successful, this study will provide a biologically relevant, easily accessible and experimentally amenable system to perform in-depth studies with scientific and clinical impacts to understand and potentially treat conditions such as infertility, reproductive decline, develop novel contraceptive and in the long term, to develop drugs to improve reproductive health and prevent several chronic diseases.