A range wide transplant experiment using participatory science and genomic predi...
A range wide transplant experiment using participatory science and genomic prediction to assess local adaptation in forest trees
How organisms adapt to their environments is the most fundamental question in evolutionary biology and is of utmost importance given climate change threats. Identifying key traits involved in adaptations and understanding how they...
How organisms adapt to their environments is the most fundamental question in evolutionary biology and is of utmost importance given climate change threats. Identifying key traits involved in adaptations and understanding how they interact with each other, and with the environment, is a particularly urgent task for foundation and resource-production species, such as forest trees. Existing experiments assessing local adaptation lack scalability and predictability in natural environments, especially at the species range margins. Landscape genomics studies could reveal adaptive loci across environmental gradients, but they are hindered by the assumptions of a neutral model and the highly polygenic nature of most traits. To address these shortcomings, I will conduct a species range-wide transplant experiment using participatory science and genomics to (i) reveal major patterns and drivers of adaptation and (ii) to build a predictive model for selecting optimal seed sources for a given location that accounts for gene-environment interactions and demography. I will develop a participatory network of foresters as well as ordinary citizens, who will establish a large number (>2500) of micro gardens (4 to 36 m2). Seeds source populations of Fagus sylvatica and Abies alba, and their sister species, will be selected from across their ranges. To evaluate plant performance in novel climate conditions, garden locations will also cover locations beyond the species' current distribution range. Early survival and growth traits, which are under the highest selection pressure in trees, will be monitored and analyzed herein. An unprecedented nearly full factorial design transplant data set will be obtained using a genomic prediction (GP) model that exploits the genetic similarity between populations and the environmental similarity between garden locations. Finally, I will implement the GP model for forest managers to aid assisted migration decisions with evolutiver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.