A quantum computer based on electron spins in carbon nanomaterials
I will create a two-qubit universal quantum computer based on electron spins a carbon nanotube. Nanotubes are outstanding host material for spin qubits, because they allow hyperfine decoherence to be completely eliminated. Very re...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
I will create a two-qubit universal quantum computer based on electron spins a carbon nanotube. Nanotubes are outstanding host material for spin qubits, because they allow hyperfine decoherence to be completely eliminated. Very recently, I demonstrated the first single qubit in a nanotube, using electric fields combined with a bend in the nanotube to coherently control an electron's spin. This project will realize the additional elements for a computer: high-fidelity qubit readout, a two-qubit gate, and long-lived quantum memory.
The objectives are threefold. First, I will perform single-shot readout by incorporating radio-frequency single-electron-transistors into a qubit device. Using established spin-to-charge conversion techniques, this will allow independent readout of multiple qubits. Second, I will use the exchange coupling between adjacent nanotube quantum dots to implement a universal two-qubit gate. Finally, I will create a long-lived quantum memory based on spin-active endohedral fullerene molecules chemically attached to the nanotube. These molecules have already shown outstanding quantum coherence properties in ensembles, which I will exploit for devices for the first time. The end goal is a device capable of implementing arbitrary two-bit quantum algorithms, opening the way to a scalable quantum computer based on carbon electronics.