A Personalised Living Cell Synthetic Computing Circuit for Sensing and Treating...
A Personalised Living Cell Synthetic Computing Circuit for Sensing and Treating Neurodegenerative Disorders
There remain urgent and unmet needs for the treatment of neurological diseases. Epilepsy is a serious, chronic brain disease characterized by recurrent seizures. Closed-loop, implanted devices offer ways to reduce seizures in drug...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
EGNITE
Engineering Graphene for developing Neural Interfaces to rev...
4M€
Cerrado
NEUROSENSE
NEUROendocrine SENSor for Sudden Unexpected Death in Epileps...
4M€
Cerrado
SilVerDBS
Practical design of closed loop DBS algorithms using systema...
185K€
Cerrado
RTC-2017-6225-1
Desarrollo de plataforma IoT para la eliminación selectiva d...
217K€
Cerrado
PID2019-110410RB-I00
IMPLANTE MILIMETRICO CON INTELIGENCIA ARTIFICIAL INTEGRADA P...
138K€
Cerrado
PRE2020-094293
DESARROLLO DE FARMACOS NEUROPROTECTORES CONTRA DIANAS ASTROC...
99K€
Cerrado
Información proyecto PRIME
Duración del proyecto: 48 meses
Fecha Inicio: 2021-01-19
Fecha Fin: 2025-01-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
There remain urgent and unmet needs for the treatment of neurological diseases. Epilepsy is a serious, chronic brain disease characterized by recurrent seizures. Closed-loop, implanted devices offer ways to reduce seizures in drug-resistant patients but their efficacy is poor and they interrupt seizures only after they begin. PRIME capitalizes on a breakthrough discovery that transfer RNA (tRNA) fragments, a novel class of noncoding RNA, increase in patients in advance of when a seizure occurs. We propose to engineer human cells to respond to tRNA fragment elevations as the trigger for pre-emptive release of glial-derived neurotrophic factor (GDNF), a seizure-suppressing and disease-modifying treatment. Artificial Intelligence (AI) algorithms will be used to integrate OR or AND logic gate functions in the switching process, depending on the quantity and type of tRNA fragments and timing of their release in a given epileptic network and a second, fail-safe calcium-dependent pathway will allow GDNF release in the event of a breakthrough seizure. This enables a precise level of personalization in the design of the bio-computing cells, which will be encapsulated into a membrane device within the microenvironment scaffold, enabling the engineered cells to co-exist with natural brain tissue. Validation of the bio-computing cells will be tested in both in vitro microfluidic organ-on-a-chip as well as in vivo tests for effects on spontaneous seizures in rodents with epilepsy. PRIME’s results will provide a transformational diagnostic-therapeutic treatment for epilepsy and other neurological diseases that feature disrupted neuronal network function.