A novel theory of human cortical microcircuit function: Dedicated neuronal netw...
A novel theory of human cortical microcircuit function: Dedicated neuronal networks for fast cellular and synaptic computation
How human neuronal circuits are organized to produce human cognition is poorly understood. We recently showed (Nature, 2021) that human neocortex contains neuron types not found in other mammals. My preliminary data show that larg...
ver más
31/08/2028
STICHTING VU
3M€
Presupuesto del proyecto: 3M€
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2023-04-25
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto FASTHUMANNEURON
Duración del proyecto: 64 meses
Fecha Inicio: 2023-04-25
Fecha Fin: 2028-08-31
Líder del proyecto
STICHTING VU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
3M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
How human neuronal circuits are organized to produce human cognition is poorly understood. We recently showed (Nature, 2021) that human neocortex contains neuron types not found in other mammals. My preliminary data show that large, human-specialized transcriptomically-defined cell types (t-types) have surprisingly fast processing of synaptic input to action potential output properties. Other human t-types show much slower input-output properties more akin to average mammalian neurons. These fast human-specialized t-types are selectively vulnerable in prevalent human brain disorders with cognitive decline. Mechanisms of fast input-output processing are unknown. We also do not know whether fast-processing neuron t-types form preferential synaptic networks dedicated to fast cortical processing, increasing cortical computational power to support human cognition. Here, I will test this novel concept addressing four fundamental questions: What mechanisms drive fast cellular input-output properties? What mechanisms underlie non-linear dendritic processing of synaptic input? How is coupling between distal dendritic synapses and soma controlled? Do human neuron t-types with fast input-output properties form preferential synaptic networks? These questions can only now be answered with our recent transcriptomic, morpho-electric Patch-seq analysis of adult human neuron t-types. Combined with dendritic and multi-patch recordings, molecular interventions, photonic approaches, and computational modeling, I will provide an unprecedented quantitative understanding of fast cellular computation mechanisms in human cortex supporting human cognition. First preliminary data suggest that biophysical properties of human-specialized neuron t-types and synapses are distinct. Understanding human cortical organization of fast input-output neurons provides a novel framework to understand how selective loss of neuron t-types in human brain disorders gives rise to cognitive decline.