A novel Quark Gluon Plasma tomography tool from jet quenching to exploring the...
A novel Quark Gluon Plasma tomography tool from jet quenching to exploring the extreme medium properties
Quark-Gluon Plasma (QGP) is a primordial state of matter, which consists of interacting free quarks and gluons. QGP likely existed immediately after the Big-Bang, and this extreme form of matter is today created in Little Bangs, w...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
QGPDYN
Dynamics of the Quark Gluon Plasma A Journey into new phase...
655K€
Cerrado
High-TheQ
Thermalization at High Energies
2M€
Cerrado
QGP
Characterisation of a novel state of matter The Quark Gluon...
850K€
Cerrado
QUANTUMDYNAMICS
Characterisation of the basic elements of BEC dynamics beyon...
45K€
Cerrado
FIS2017-87534-P
DESAFIOS EN FISICA DE MUCHOS CUERPOS: HADRONES, NUCLEOS Y AT...
169K€
Cerrado
QGP-MYSTERY
Demystifying the Quark Gluon Plasma
1M€
Cerrado
Información proyecto QGP tomography
Duración del proyecto: 75 meses
Fecha Inicio: 2017-05-02
Fecha Fin: 2023-08-31
Líder del proyecto
INSTITUT ZA FIZIKU
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
1M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Quark-Gluon Plasma (QGP) is a primordial state of matter, which consists of interacting free quarks and gluons. QGP likely existed immediately after the Big-Bang, and this extreme form of matter is today created in Little Bangs, which are ultra-relativistic collisions of heavy nuclei at the LHC and RHIC experiments. Based on the deconfinement ideas, a gas-like behaviour of QGP was anticipated. Unexpectedly, predictions of relativistic hydrodynamics - applicable to low momentum hadron data - indicated that QGP behaves as nearly perfect fluid, thus bringing exciting connections between the hottest (QGP) and the coldest (perfect Fermi gas) matter on Earth. However, predictions of hydrodynamical simulations are often weakly sensitive to changes of the bulk QGP parameters. In particular, even a large increase of viscosity not far from the phase transition does not notably change the low momentum predictions; in addition, the origin of the surprisingly low viscosity remains unclear. To understand the QGP properties, and to challenge the perfect fluid paradigm, we will develop a novel precision tomographic tool based on: i) state of the art, no free parameters, energy loss model of high momentum parton interactions with evolving QGP, ii) simulations of QGP evolution, in which the medium parameters will be systematically varied, and the resulting temperature profiles used as inputs for the energy loss model. In a substantially novel approach, this will allow using the data of rare high momentum particles to constrain the properties of the bulk medium. We will use this tool to: i) test our soft-to-hard medium hypothesis, i.e. if the bulk behaves as a nearly perfect fluid near critical temperature Tc, and as a weakly coupled system at higher temperatures, ii) map soft-to-hard boundary for QGP, iii) understand the origin of the low viscosity near Tc, and iv) test if QGP is formed in small (p+p or p(d)+A) systems.