A novel cost effective industrial process for dispersion of Carbon Nanotubes on...
A novel cost effective industrial process for dispersion of Carbon Nanotubes on electrode materials for Li Ion Batteries
With industrial and societal demands for lighter, thinner and higher capacity batteries, there has been a lot of ongoing research for novel electrode materials with improved properties. Carbon nanotubes (CNTs) have shown enormous...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto IonDrive
Duración del proyecto: 3 meses
Fecha Inicio: 2018-07-31
Fecha Fin: 2018-11-30
Líder del proyecto
CENS MATERIALS LTD
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
71K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With industrial and societal demands for lighter, thinner and higher capacity batteries, there has been a lot of ongoing research for novel electrode materials with improved properties. Carbon nanotubes (CNTs) have shown enormous potential as Lithium-Ion Battery (LIB) electrode materials as they improve LIB power capacity by a factor of >10 and charge acceptance by >200%, reducing energy loses by >15%. However, the extensive use of CNT-based LIBs is being harboured by the lack of an industrially applicable process for dispersing CNTs on electrodes. CNTs aggregate in their formation and current dispersion methods fail to effectively unbundle the, and as such, excessive amounts of CNT are required to achieve homogeneity, which often deteriorates the intrinsic properties of CNTs, degrades electrode properties and lowers battery performance. Additionally, the CNT load increase rises the overall electrode production cost (the average cost of CNT varies from €75-€400/gram).
CENS has develop a cost-effective gas-based CNT dispersion process that allows for homogenous CNT application and reduced CNT loads by one order of magnitude. Our innovative approach involves the use of an ultra-sonic media to separate the Carbon Nano-Tubes and disperse them within the powdered electrode material. In this way, the enhanced electrode material, which increases battery capacity by 50%, can be produced without any degradation in the electronic mechanical properties of the battery electrodes. IonDrive is an innovative solution that will release to the world the full potential of CNT-based LIBs. The innovation has the potential to drive LIB market growth through battery cost reductions and opening new market and business opportunities.