A novel chemical discovery platform enabled by machine learning
Computational design and discovery of molecules and materials relies on the exploration of increasingly growing chemical spaces. The discovery and formulation of new drugs, antivirals, antibiotics, catalysts, battery materials, an...
Computational design and discovery of molecules and materials relies on the exploration of increasingly growing chemical spaces. The discovery and formulation of new drugs, antivirals, antibiotics, catalysts, battery materials, and in general chemicals with tailored properties, require a fundamental paradigm shift to search in unchartered swaths of the vast chemical space. This is in stark contrast to current approaches, which start from (commercially available) libraries of compounds from various suppliers. Within the ERC Consolidator grant BeStMo (grant agreement ID 725291) we aimed to substantially advance our ability to model and understand the behaviour of molecules in complex environments. As a result, we successfully developed a set of machine learning and physics-based methods for covalent and non-covalent interactions that now allow an accurate and efficient modelling of molecules of increasing size (from 10 to 1000 atoms). These methods now enable routine calculations of quantum-mechanical properties of molecules throughout chemical compound space, provided that enough reference data is produced as a starting point for training. Within DISCOVERER, we aim to promote a paradigm shift in chemical discovery by inverting the selection pyramid by starting with pre-defined parameters from which new chemical entities are designed through machine learning and AI-enabled algorithms. We can do so by integrating these modules into a commercial platform: Chemical Space Machine. DISCOVERER’s main goal is to finalize the development of a commercial alpha version of Chemical Space Machine and setting up its commercialisation strategy.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.