A new SUPERconducting LANDscape: using nanoscale inhomogeneity for enhanced supe...
A new SUPERconducting LANDscape: using nanoscale inhomogeneity for enhanced superconductivity
Superconductivity is a truly quantum mechanical phenomenon, strongly dependent on the zero-energy density of states (DOS). This project aims to create and enhance superconductivity using nanoscale inhomogeneity to produce large DO...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
FIS2008-04209
TRANSPORTE CUANTICO EN NANO-ESTRUCTURAS HIBRIDAS: EFECTOS AS...
120K€
Cerrado
FIS2017-84860-R
DINAMICA, SUPERCONDUCTIVIDAD Y TOPOLOGIA EN NANOESTRUCTURAS...
157K€
Cerrado
SCQSR
Superconductivity in quantum size regime
228K€
Cerrado
NANOHIGHTC
Search for novel mechanisms to increase the critical tempera...
100K€
Cerrado
Información proyecto SUPERLAND
Duración del proyecto: 65 meses
Fecha Inicio: 2023-03-16
Fecha Fin: 2028-08-31
Líder del proyecto
UPPSALA UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Superconductivity is a truly quantum mechanical phenomenon, strongly dependent on the zero-energy density of states (DOS). This project aims to create and enhance superconductivity using nanoscale inhomogeneity to produce large DOS peaks at zero energy, thereby creating an entirely new, spatial and figurative, landscape for superconductivity. One recent example is twisted bilayer graphene, an all-carbon material that becomes superconducting due to a moiré structure producing large zero-energy DOS peaks. In this project we will establish superconductivity driven entirely by nanoscale inhomogeneity generating zero-energy DOS peaks, including in moiré structures. We will also use zero-energy DOS peaks to create a superconducting phase crystal in many different superconductors, generalizing findings from high-temperature cuprate superconductor surfaces. In the project we will continue to develop our state-of-the-art computational tools to self-consistently study superconductivity in large inhomogeneous systems at the atomistic level.