A New Strategy for Vibronic Spectroscopy of Radicals
This proposal aims to develop a novel strategy for high resolution vibronic spectroscopy of radicals, with
unprecedented sensitivity, specificity, and applicability. The proposed scheme will provide answers to
longstanding quantum...
This proposal aims to develop a novel strategy for high resolution vibronic spectroscopy of radicals, with
unprecedented sensitivity, specificity, and applicability. The proposed scheme will provide answers to
longstanding quantum mechanical questions about non-adiabatic dynamics, and, in combination with a
unique, recently developed transparent microreactor source of reactive molecules, enable the pursuit of
unknown reactive intermediates.
Radicals and transient reactive intermediates are centrally important to chemistry but notoriously difficult
to study. The proposer has recently led several successful experimental and theoretical efforts directed
at molecules and transition states thought to be extremely difficult if not impossible to characterize. Here
we propose to launch a revolutionary approach to spectroscopy of these important species, exploiting a
key insight into dissociation dynamics on top of elements of state of the art laser spectroscopy techniques
in the infrared, ultraviolet, and vacuum ultraviolet to forge a new universal method. It possesses the high
sensitivity and mass selectivity of ion detection, while simultaneously being multidimensional and fully
rovibronic in scope to extract the maximum possible information about coupled nuclear and electronic
dynamics.
We anticipate that this advance will also be of great interest and utility to a broad swath of researchers
in related fields, such as combustion, atmospheric chemistry, and surface science, who require the ability
to track rare but reactive species. The nitrate and cyclopentadienyl radicals will initially be targeted as
particularly important examples, and we also plan to hunt for as yet unobserved reactive intermediates
using our new spectroscopic scheme alongside the flexibility of our molecular source to rationally explore
chemical phase space.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.