Currently, General Relativity (GR) and the standard model of particles physics are severely challenged by their inability to explain the late-time accelerated expansion of the Universe, known as the dark energy problem. The most p...
ver más
Descripción del proyecto
Currently, General Relativity (GR) and the standard model of particles physics are severely challenged by their inability to explain the late-time accelerated expansion of the Universe, known as the dark energy problem. The most promising scenarios aiming to explain it are the so--called scalar-tensor theories, corresponding to extensions of GR where gravity is enhanced through a new gravitational force mediated by a scalar field. The quest for phenomenological imprints of new scalar gravitational forces has been a central effort in cosmology and astrophysics over the last decade.
My goal is to introduce helioseismology as a test of unprecedented accuracy in the search for new gravitational forces in Nature. The focus will be on the most general scalar-field extensions of GR, known as DHOST scalar-tensor theories. The unique ability of solar pulsations to probe the finest details of gravity in the solar interior, combined with the extreme accuracy of helioseismic observations, promises an orders-of-magnitude improvement of previous constraints.
I will formulate the theoretical framework for adiabatic stellar pulsations in this context, and with sophisticated numerical techniques, I will model the associated solar pulsation eigenspectrum. A systematic statistical analysis will be devised to confront the predictions against observations making use of powerful helioseismic inversions, and derive the tightest constraints on the most general scalar-tensor theories up to date. The cosmological implications will be predicted, in accordance with ESA’s upcoming Euclid satellite mission.
The project will introduce a genuinely novel, interdisciplinary line of research that will strongly impact a broad spectrum of cosmology and astrophysics. The new constraints will be pivotal for our understanding of scalar-gravity interactions in Nature, and are expected to guide the future modelling of dark energy, and scalar field theories in general.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.