A multiscale theoretical investigation of carbon monoxide oxidation on gold nano...
A multiscale theoretical investigation of carbon monoxide oxidation on gold nanomaterials for energy and environmental applications
A multiscale theoretical investigation of the CO oxidation on Au nanostructures supported on various oxides is proposed. Since Haruta’s 1987 discovery of the exceptional activity of gold (Au) nanoparticles (2-5 nm in diameter), ma...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CTQ2014-52956-C3-2-R
NUEVOS NANOMATERIALES COMO CATALIZADORES PARA PROCESOS DE VA...
197K€
Cerrado
CTQ2010-14872
MATERIALES NANOESTRUCTURADOS BASADOS EN OXIDOS: CONTROL ESTR...
152K€
Cerrado
CTQ2012-37420-C02-02
RUPTURA Y FORMACION DE O-O CON CATALIZADORES BIOINSPIRADOS P...
77K€
Cerrado
MAT2009-10481
MATERIALES NANOPOROSOS Y NANOPARTICULADOS PARA LA OBTENCION...
155K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
A multiscale theoretical investigation of the CO oxidation on Au nanostructures supported on various oxides is proposed. Since Haruta’s 1987 discovery of the exceptional activity of gold (Au) nanoparticles (2-5 nm in diameter), many groups have verified this exceptional activity towards many reactions when supported on certain oxides. For example, the Au/TiO2 system exhibits unprecedented activity in low temperature CO oxidation via O2. CO oxidation is of paramount importance not only in automotive catalysis but also in modern energy related applications including hydrogen production via the water-gas shift reaction with steam from fossil and renewable fuels, hydrogen purification via selective oxidation of hydrogen with oxygen, fuel cells, etc. Although the high activity of Au is beyond any doubt, there is still much debate on the nature of active sites and the underlying reaction mechanisms. Herein, a multiscale bottom-up approach will be developed that cuts among ab-initio and semi-empirical (free-energy related) techniques and integrates this information into first-principles Monte Carlo kinetics simulations in order to explain the exceptional reactivity of Au nanoparticles on certain supports, explore its electronic properties and eventually pave the way for design of efficient catalysts for hydrogen purification and fuel cells applications.