A multiscale Machine Learning based Software for the Simulation of Catalytic Pro...
The reduction of the environmental footprint of the chemical and related industries is nowadays of utmost importance. The transition towards more sustainable processes that combine efficient use of raw material and energy with hig...
The reduction of the environmental footprint of the chemical and related industries is nowadays of utmost importance. The transition towards more sustainable processes that combine efficient use of raw material and energy with higher transformation rates, better selectivity and higher mass and energy efficiency will contribute to meet the objectives of the green deal. In this respect, catalysis engineering is pivotal to developing technologies able to meet these goals and to shape the sustainable economy of the future. The accurate description of this multiscale process has a substantial impact on the performances of the entire chemical process and, consequently, on many manufacturing sectors. The description of the catalytic process requires a detailed and accurate definition of the intrinsic reactivity, by means of first-principles kinetic schemes, coupled with rigorous models at the reactor scale. Currently, this approach is hindered by the limited available computational resources which prevent the adoption of detailed and atom-resolved kinetic models into reactor simulations with a reasonable computational burden. To overcome the limitations identified above, starting from the results obtained during the ERC Stg “SHAPE” (n. 677423), we propose MultiCAT, a highly accurate yet computationally lean multi-scale physics-guided machine learning-based surrogate modelling framework of the entire reactor from the atomistic to the process scales. This represents a leapfrog improvement in the detailed numerical modeling of catalytic processes, by achieving a drastic reduction in the computational cost with a concomitant boost in the prediction reliability, and paving the way for a new generation of catalytic process models, an evolution of hybrid digital twins, for online process design, optimization and control.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.