A multiprocessor system on chip with in-memory neural processing unit
Deployment of intelligence at the edge presents many challenges because devices need to be low-cost and, as such, they are often constrained in computing capacity, memory, and energy resources.These constraints are not compatible...
Deployment of intelligence at the edge presents many challenges because devices need to be low-cost and, as such, they are often constrained in computing capacity, memory, and energy resources.These constraints are not compatible with the need for much more advanced AI algorithms calling for Mbytes of storage and tens of GOPS per inference and call for leaner edge AI algorithms. The current state of the art for (the few) edge-AI chips relies on low-cost process technologies at 90 or 40nm and in some cases up to 16nm, with power efficiency between 1-5 TOPS/w and power densities up to 1 TOPS/mm2.Recently several industrial projects and a few products have started to surface pursing neuromorphic and in memory computing, but none of these efforts have reached a level of maturity compatible with a mass volume production and cost, and, moreover the technology base they rely on is either not scalable to more advanced nodes (flash) or, targeting AI computing algorithms whose practical applications are yet to be fully proven (e.g., spiking). The NeuroSoC approach instead is to rely on a solid, mature, and qualified reliable Phase Change Memory technology to create an industrially proven path to go past the state of the art, as such, the NeuroSoC chip pre-product demonstration of the technology will be the first of his kind worldwide.NeuroSoC’s aim is to develop an advanced Multi-Processor System on Chip prototype in FD-SOI 28nm CMOS technology that tightly integrates an AIMC IMNPU unit, a local digital processing subsystem, and functional safe multiprocessor host subsystems based on an enhanced version of existing RISC-V microprocessor implementation, while covering IMNPU security aspects holistically to tackle the requirements of a wide set of edge-AI applications.The project will leverage STMicroelectronics’s unique high-density embedded PCM cell process technology being the denser and only such technology qualified and mature for embedded use in the industry worldver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.