A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms fo...
A Multi-Omics Approach for Novel Drug Targets, Biomarkers and Risk Algorithms for Myocardial Infarction
In TargetMI we propose a high throughput multi-omic approach for rapid discovery of novel drug targets, biomarkers and risk algorithms, applied here to atherosclerosis, myocardial infarction (MI) and their risk factors. Cardiovasc...
In TargetMI we propose a high throughput multi-omic approach for rapid discovery of novel drug targets, biomarkers and risk algorithms, applied here to atherosclerosis, myocardial infarction (MI) and their risk factors. Cardiovascular disease is a major cause of death and morbidity worldwide. The causes of MI are highly complex involving genetic, lifestyle and environmental factors. Whilst much research effort has been invested in attempting to decipher these factors, clinical applications of findings are disappointingly few. We will harness four -omic datasets (whole genome, transcriptomic, metabolomic and proteomic data) on 1000 highly phenotyped samples of the Maltese Acute Myocardial Infarction (MAMI) Study. These were collected from cases, controls and relatives of cases (including 80 families) with meticulous attention to preanalytical variables. We will identify intermediate phenotypes associated with risk of MI and its associated risk factors. Using a combination of approaches including extreme phenotype and family-based approaches we will identify variants which robustly influence these intermediate phenotypes. The genes thus identified are potential drug targets that influence risk of MI via an intermediate phenotype and are applicable across all populations. They will be validated through various approaches including computational analysis, (using Mendelian randomisation and 10 year follow-up data), and functional work that includes using zebrafish as an animal model. Machine learning algorithms will be used to analyse the multi-layered data to identify novel biomarkers and risk algorithms, including polygenic risk scores, for early risk prediction in the clinic. Quantitative targeted proteomic assays will be developed for further validation in other cohorts facilitating clinical use. Besides the increase in knowledge on the molecular etiology of MI, this powerful integrated strategy will bring rapid clinical translation of unprecedented multi-omic data.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.