Achilles tendon ruptures are common and costly, and more than 50% heal unsuccessfully. Tendons respond to mechanical load over time and loading is fundamental for good mechanical performance. However, the regulatory mechanisms are...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TENDON_MECHBIO
Biomechanics and mechanobiology of the Achilles tendon
206K€
Cerrado
PID2020-113822RB-C21
EVALUACION MECANICA DE LA REGENERACION TENDINOMUSCULAR Y APL...
182K€
Cerrado
MTM2014-51485-ERC
ANALISIS MATEMATICO DE MODELOS DE REMODELACION OSEA
49K€
Cerrado
COMPLIMB
A computational tool to elucidate the mechanobiological regu...
246K€
Cerrado
SOFT-TISSUES
Mathematical modelling of soft tissues
176K€
Cerrado
BES-2012-053422
MODELADO BIOMECANICO DEL TEJIDO MUSCULO-ESQUELETICO ABDOMINA...
41K€
Cerrado
Información proyecto TENDON_MECHBIO
Duración del proyecto: 61 meses
Fecha Inicio: 2021-03-30
Fecha Fin: 2026-04-30
Líder del proyecto
LUNDS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Achilles tendon ruptures are common and costly, and more than 50% heal unsuccessfully. Tendons respond to mechanical load over time and loading is fundamental for good mechanical performance. However, the regulatory mechanisms are still largely unknown. The main objective of this proposal is to clarify how intact and ruptured healing Achilles tendons are responding to mechanical load. The hypothesis is that the underlying mechanisms can be elucidated through an advanced multimodal approach that combines novel experimental and numerical models across several length scales to clarify the distinct adaptive response of elastic and viscoelastic mechanical behaviour. The proposal combines well-controlled in vivo animal experiments that are uniquely characterized (in situ) to develop and validate novel adaptive computational (in silico) models that can comprehensively predict the spatial and temporal tissue distributions and biomechanical behavior of healthy intact and ruptured healing tendons. On each length scale, experimental mechanical tests are carried out concurrently with 3D/2D high resolution imaging/scattering (in situ), to clarify how the inhomogeneous meso-, micro- and nanostructures behave under loading, in a setup planned to deliver optimal data for development and validation of computational models.
The interdisciplinary project will deliver high-impact science where the multimodal approach on several length scales could establish new paradigms in tendon biomechanics and mechanobiology. Further, it will lift bioengineering to new levels by unravelling the link between load-controlled molecular mechanisms and viscoelastic mechanical response. It will deliver a novel validated computational framework that the research community may use to propose enhanced solutions for managing tendon injuries. As such, it approaches a well-defined clinical problem from an engineering view, where the PI’s well-received published and ongoing work is the foundation for the idea.