A Missing Key Property in Atmospheric AeRosol ChEmistry the Laplace Pressure
Fine aerosol particles are ubiquitous in the atmosphere and have important impacts on climate change and air quality. Organic compounds represent the largest mass fraction of fine particulate matter and their formation is believed...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CGL2013-49020-R
AEROSOL MARINO BIOGENICO: DESDE LAS NUCLEATION HASTA LAS NUB...
Cerrado
CGL2010-18145
DETERMINACION DE NANOPARTICULAS ATMOSFERICAS E INFLUENCIA DE...
123K€
Cerrado
GASPARCON
Molecular steps of gas to particle conversion From oxidatio...
2M€
Cerrado
PID2021-125669NB-I00
ESTUDIO DE EVENTOS EXTREMOS DE AEROSOLES DE ORIGEN DESERTICO...
212K€
Cerrado
INTEGRATE
An Integrated View on Coupled Aerosol Cloud Interactions
3M€
Cerrado
PID2021-128757OB-I00
HACIA UNA COMPRENSION INTEGRADA DEL IMPACTO DE LOS AEROSOLES...
180K€
Cerrado
Información proyecto MAARvEL
Duración del proyecto: 68 meses
Fecha Inicio: 2019-11-05
Fecha Fin: 2025-07-31
Descripción del proyecto
Fine aerosol particles are ubiquitous in the atmosphere and have important impacts on climate change and air quality. Organic compounds represent the largest mass fraction of fine particulate matter and their formation is believed to occur through the condensation of oxygenated volatile organic compounds. However, a fundamental physicochemical property of atmospheric aerosols – the Laplace pressure – has never been studied. This missing property is expected to have major implications for atmospheric chemistry and may explain the current gaps between ambient observations and modelling studies when evaluating the formation rates, ambient concentrations and the spatial distribution of atmospheric nanoparticles. Hence, my project aims at elucidating the key processes driven by the Laplace pressure in atmospheric aerosols and how they impact on the growth, evolution and physicochemical properties of submicron particles. MAARvEL focuses on the smallest particles, where the Laplace pressure is expected to have the greatest impact. By exploiting recent instrumental developments and using state-of-the-art mass spectrometry techniques, MAARvEL will provide an unequalled understanding of the processes occurring within the particles. Innovative laboratory experiments will be performed to discover the central role of the Laplace pressure for; (i) condensed-phase reactions, (ii) photochemical processes, and (iii) physicochemical properties of submicron particles. A strong emphasis will be placed on quantifying the extent to which chemical processes govern the growth and evolution of atmospheric nanometre-sized particles. By revealing how the Laplace pressure controls particle phase chemistry, MAARvEL will provide a major breakthrough to support more accurate predictions of the formation and evolution of atmospheric nanoparticles, thereby decreasing the uncertainties in assessing the magnitude of aerosol effects on climate.