Innovating Works

E-COOL

Financiado
A HOLISTIC APPROACH OF ELECTRIC MOTOR COOLING
Electric motors (e-motors) consume more than 40% of electricity produced globally. The EU aims to save ~40Mt of CO2 emissions per year until 2030 by deploying more efficiency e-motors. E-motors are also the driving force behind EV... Electric motors (e-motors) consume more than 40% of electricity produced globally. The EU aims to save ~40Mt of CO2 emissions per year until 2030 by deploying more efficiency e-motors. E-motors are also the driving force behind EVs, currently leading the global efforts for decarbonisation of the transportation sector; their efficiency is crucial in extending EV mileage. Unfortunately, electrification plans for heavy-duty, earth-moving machines and aircrafts (accounting currently ~60% of fossil fuel consumption in transportation) have to overcome, among other limitations, the technological barrier of excess heat generated in the e-motor copper windings during power-demanding operations associated with these sectors. E-COOL promises to address this challenge via the development of a holistic e-motor cooling technology, maximising heat transfer through direct-contact, spray cooling. E-COOL aims to achieve this technological breakthrough at time-scales compatible to those required for industrial innovation to reach the market, by integrating two interdisciplinary activities: (a) development and manufacturing of novel oil-based, dilute polymer mixtures of non-Newtonian nature, which, when employed in spray-cooling thermal management systems, will be a game-changer; (b) implementation of a universal design methodology for spray cooling, optimised with the aid of new Machine Learning (ML) algorithms. Training datasets for the ML tool will be obtained by ‘ground-truth’ experimental and numerical investigations also to be conducted for the first time in E-COOL. The envisioned cooling system aims to provide unprecedented cooling rates at local temperature hot spots, which can contribute to an average 20% increase in e-motor’s efficiency compared to today’s state-of-the-art. This will allow next-generation e-motor utilisation over the whole range of transportation sectors, thus, facilitating significant additional energy and CO2 savings relative to the existing EU plans. ver más
29/02/2028
2M€
Duración del proyecto: 47 meses Fecha Inicio: 2024-03-01
Fecha Fin: 2028-02-29

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2024-03-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
OTTOVONGUERICKEUNIVERSITAET MAGDEBURG No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5