A heterogeneous distributed prediction model for wind-solar energy production
To achieve the European Union's green transition goal, solar photovoltaic (PV) and wind energy are widely adopted, which pose great challenges to the reliability and safety of existing energy systems. The state-of-the-art methods...
To achieve the European Union's green transition goal, solar photovoltaic (PV) and wind energy are widely adopted, which pose great challenges to the reliability and safety of existing energy systems. The state-of-the-art methods mainly concentrate on the prediction of a single energy form, either wind or solar. There is limited research on joint forecasting for wind-solar energy due to the challenges of data heterogeneity and data silos for different wind farms and solar PV plants. This project develops a heterogeneous distributed prediction model for joint wind-solar energy production (ANSWER), based on heterogeneous data sources at different wind farms and solar PV plants. A global model will be generated by the fusion of heterogeneous models from all wind farms and solar PV plants, coordinated by a central server. To achieve the research goal, this project proposes four work packages, including 1) development of model specifications, which use a two-level structure:client-level and server-level, 2) development of a generic seamless forecasting client model that supports multiple time-scale and -horizon prediction, 3) model aggregatioin for heterogeneous client models, and 4) model deployment and evaluation in a living lab for the robustness of the proposed ANSWER model. This proposal ANSWER specifies the resources needed for this project, including the quality and capacity of the host university, mentors, data, and experimental facilities. This project will enhance the scientific skills and innovation capability, expand research horizons, and establish research collaborations of the applicant. A two-way knowledge transfer approach in energy big data, distributed modeling and energy system analysis is proposed to ensure benefits between the applicant and the host university. The proposed model will make a significant contribution to the state of the art in renewable energy (wind and solar) production forecasting and the EU climate goals.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.