A Graph Theoretic Approach for Resilient Distributed Algorithms
Following the immense recent advances in distributed networks, the explosive growth of the Internet, and our increased dependence on these infrastructures, guaranteeing the uninterrupted operation of communication networks has bec...
Following the immense recent advances in distributed networks, the explosive growth of the Internet, and our increased dependence on these infrastructures, guaranteeing the uninterrupted operation of communication networks has become major objective in network algorithms. The modern instantiations of distributed networks, such as, the Bitcoin network and cloud computing, introduce in addition, new security challenges that deserve urgent attention in both theory and practice. The goal of this project is to develop a unified framework for obtaining fast, resilient and secure distributed algorithms for fundamental graph problems. We will be focusing on three main objectives: 1. Developing efficient distributed algorithms that handle various adversarial settings, such as, node crashes and Byzantine attacks. 2. Initiating and establishing the theoretical exploration of security in distributed graph algorithms. Such a notion has been addressed before mainly in the context of secure multi-party computation (MPC). The heart of our approach is to develop new graph theoretical infrastructures to provide graphical secure channels between nodes in a communication network of an arbitrary topology. 3. Exploring the power of interaction between an untrusted prover and a distributed verifier. This model touches upon central theoretical concepts concerning randomness, communication, and their interplay with the underlying graph. The main novelty in addressing these objectives is in our approach, which is based on taking a graph theoretic perspective where common notions of resilience requirements will be translated into suitably tailored combinatorial graph structures. We believe that the proposed plan will deepen the theoretical foundations for resilient distributed computation, strengthen the connections with the areas of fault tolerant network design and information theoretic security, and provide a refreshing perspective on extensively-studied graph theoretical concepts.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.