A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Ru...
A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Rural Depopulation, Agricultural Land Abandonment, and Deforestation in Bulgaria and Turkey, 1940-2040
Rural depopulation, agricultural land abandonment, and deforestation are massive concerns for Europe and elsewhere today and our planet's future. These interlinked phenomena can be analysed using land use and land cover (LULC) map...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
CSO2016-79420-R
INNOVACIONES TECNICAS Y METODOLOGICAS EN EL SISTEMA DE INFOR...
23K€
Cerrado
BES-2014-068900
HERRAMIENTAS CARTOGRAFICAS PARA UNA GOBERNANZA INTELIGENTE E...
88K€
Cerrado
CGL2010-19591
DESARROLLO DE METODOLOGIAS INTEGRADAS PARA LA ACTUALIZACION...
77K€
Cerrado
JCI-2010-06701
Aportación de las TIG a la descripción, explicación y simula...
101K€
Cerrado
CSO2012-32428
: DISEÑO DE UN SISTEMA DE LOCALIZACION DE FOTOGRAFIAS AEREAS...
18K€
Cerrado
CSO2015-65257-R
ESPACIOS DE RIESGO CAUSADOS POR LOS CAMBIOS EN LOS USOS Y CU...
17K€
Cerrado
Información proyecto GeoAI_LULC_Seg
Duración del proyecto: 18 meses
Fecha Inicio: 2022-09-22
Fecha Fin: 2024-03-31
Líder del proyecto
KOC UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
150K€
Descripción del proyecto
Rural depopulation, agricultural land abandonment, and deforestation are massive concerns for Europe and elsewhere today and our planet's future. These interlinked phenomena can be analysed using land use and land cover (LULC) maps combined with dynamics of population geography, especially regarding urban sprawl. Modern LULC and spatially disaggregated population datasets go back to the 1980s and 1970s. Although we have earlier population data, these are not geomatched to locations in LULC maps. Earlier LULC maps are either not very reliable (extracted from historical maps) or limited in their geographical coverage (based on selected aerial photos or satellite imagery). These are severe limitations to developing longer and deeper perspectives and understanding the root causes of these detrimental changes in population geography and land use practices in large territories.
GeoAI_LULC_Seg will develop an advanced, modular, and customizable geospatial artificial intelligence-based land use land cover segmentation process to accurately map LULC conditions for around 30,000 km2 in a border region between Bulgaria and Turkey, including the cities Edirne, Istanbul, and Plovdiv, from historical aerial photographs and early reconnaissance satellite images (dating back to the 1950s and the 1970s respectively) by pairing them with geotagged historical population census data.
Our methodological novelties are not limited to GeoAI-based object segmentation and super-resolution applications for panchromatic imagery for our research area. Our project will create transferable knowledge and scalable methods for global applications for the 1970s, thanks to worldwide coverage of high-spatial-resolution satellite imagery we will process. Furthermore, we will build long-term LULC maps series commensurable with current satellite data (1950-2020), allowing us to improve predictions for future population geography and LULC changes.