A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Ru...
A GeoAI-based Land Use Land Cover Segmentation Process to Analyse and Predict Rural Depopulation, Agricultural Land Abandonment, and Deforestation in Bulgaria and Turkey, 1940-2040
Rural depopulation, agricultural land abandonment, and deforestation are massive concerns for Europe and elsewhere today and our planet's future. These interlinked phenomena can be analysed using land use and land cover (LULC) map...
Rural depopulation, agricultural land abandonment, and deforestation are massive concerns for Europe and elsewhere today and our planet's future. These interlinked phenomena can be analysed using land use and land cover (LULC) maps combined with dynamics of population geography, especially regarding urban sprawl. Modern LULC and spatially disaggregated population datasets go back to the 1980s and 1970s. Although we have earlier population data, these are not geomatched to locations in LULC maps. Earlier LULC maps are either not very reliable (extracted from historical maps) or limited in their geographical coverage (based on selected aerial photos or satellite imagery). These are severe limitations to developing longer and deeper perspectives and understanding the root causes of these detrimental changes in population geography and land use practices in large territories.
GeoAI_LULC_Seg will develop an advanced, modular, and customizable geospatial artificial intelligence-based land use land cover segmentation process to accurately map LULC conditions for around 30,000 km2 in a border region between Bulgaria and Turkey, including the cities Edirne, Istanbul, and Plovdiv, from historical aerial photographs and early reconnaissance satellite images (dating back to the 1950s and the 1970s respectively) by pairing them with geotagged historical population census data.
Our methodological novelties are not limited to GeoAI-based object segmentation and super-resolution applications for panchromatic imagery for our research area. Our project will create transferable knowledge and scalable methods for global applications for the 1970s, thanks to worldwide coverage of high-spatial-resolution satellite imagery we will process. Furthermore, we will build long-term LULC maps series commensurable with current satellite data (1950-2020), allowing us to improve predictions for future population geography and LULC changes.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.