Dysfunction of protein Tau is the main cause of dementia. Dementia associates with synaptic failure and sleep disturbances, but their connection remains elusive. In dementia, Tau becomes hyperphosphorylated (p-Tau) causing synapti...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-123140NB-I00
DISFUNCION DEL SEGMENTO INICIAL DEL AXON Y NEURODEGENERACION...
163K€
Cerrado
TARGET_SYNAPTIC_TAU
Targeting Tau induced cognitive decline with antisense oligo...
150K€
Cerrado
SAF2013-43900-R
MECANISMOS TRANSCRIPCIONALES DE PERDIDA DE MEMORIA EN RATONE...
230K€
Cerrado
SAF2016-80027-R
MECANISMOS TRANSCRIPCIONALES DE PLASTICIDAD SINAPTICA EN CIR...
200K€
Cerrado
SAF2012-38316
TETRAPLOIDIA NEURONAL EN EL CEREBRO ADULTO Y ENFERMEDAD DE A...
176K€
Cerrado
Información proyecto sleepyTau
Duración del proyecto: 24 meses
Fecha Inicio: 2024-03-04
Fecha Fin: 2026-03-31
Líder del proyecto
VIB VZW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
176K€
Descripción del proyecto
Dysfunction of protein Tau is the main cause of dementia. Dementia associates with synaptic failure and sleep disturbances, but their connection remains elusive. In dementia, Tau becomes hyperphosphorylated (p-Tau) causing synaptic loss. Temperature fluctuations also associate with Tau phosphorylation, for example in hibernating animals. Intriguingly, my work demonstrates that brain temperature decreases during sleep, and further evidence suggests there are Tau-sites phosphorylated during sleep. My hypothesis is that sleep (and temperature)-induced Tau phosphorylation drives synaptic plasticity changes during sleep. To investigate this, I will map the dynamic changes in p-Tau during sleep and then delve into the mechanisms by mimicking brain temperature changes that naturally occur during sleep in human-induced neurons and mouse primary neurons. Employing genome engineering, I will interfere with p-Tau during sleep in mice in vivo and evaluate its impact on sleep, sleep-dependent synaptic plasticity and hippocampal long-term potentiation. This research challenges the notion that p-Tau solely drives disease progression, exploring a physiological function for p-Tau in regulating synaptic plasticity during sleep. The result of this project can challenge our understanding of Tau's function and open a new therapeutic avenue: the development of sleep-wake mechanisms to reverse the pathological p-Tau state observed in dementia. With my host lab's prior track record of uncovering critical insights into Tau-induced synaptic dysfunction, it stands as the perfect platform to tackle these questions. Additionally, I find myself in an ideal position, armed with exciting preliminary data that bolsters the validity of this proposal, and a robust technical and scientific background that empowers me to embark on this ambitious research journey. The plan I propose brings us closer to breakthroughs in effective dementia treatments.