A Design Principle for Predicting Flexible Metal-Organic Frameworks
Metal-organic frameworks, MOFs, are porous organic-inorganic hybrid materials that hold the potential for developing new
technologies to tackle some of the pressing global challenges such as pollution, climate change and energy cr...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MULTIMOF
Multifunctional Metal Organic Frameworks
173K€
Cerrado
SUSMOF
Sustainable Synthesis of Metal Organic Frameworks
155K€
Cerrado
FC2DMOF
Development of Functional Conjugated Two Dimensional Metal O...
2M€
Cerrado
PID2020-117177GB-I00
MOFS DE VALENCIA MIXTA CON COMPORTAMIENTO ELECTRONICO Y MAGN...
158K€
Cerrado
PGC2018-099296-B-I00
DISEÑO DE MATERIALES METAL-ORGANICOS SELECTIVOS PARA LA VAL...
143K€
Cerrado
COSMOS
Computational Simulations of MOFs for Gas Separations
2M€
Cerrado
Información proyecto FlexiMOFs-2
Duración del proyecto: 27 meses
Fecha Inicio: 2023-05-03
Fecha Fin: 2025-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Metal-organic frameworks, MOFs, are porous organic-inorganic hybrid materials that hold the potential for developing new
technologies to tackle some of the pressing global challenges such as pollution, climate change and energy crisis. Their typical low
mass densities, high internal surface area, large pore volumes and facile chemistry makes them suitable for application in gas storage,
filtration, extraction, catalysis and so on. Some MOFs are known to show a substantial degree of structural flexibility wherein the
framework reversibly expands/contracts when subjected to external stimuli like pressure/heat/light or during absorption/desorption.
This structural flexibility, if fully understood, can be used to enable the technological development of MOF-based recyclable filters,
switchable catalysts, threshold sensors, stimulus-induced drug delivery systems with integrated key-lock functionality, compressible
gas tanks and so on. However, the origin of this flexibility has not yet been sufficiently understood to enable the rational design of
flexible MOFs. This research project aims to provide a conceptual understanding on the origin of this flexibility at the atomic regime
by analysing all unique building units, topologies, and frameworks of all published MOFs to design a universally robust metric for
predicting flexibility and mechanical properties of MOFs with the overarching goal of providing a theoretical methodology for the
crystal engineering of flexible MOFs.