The ability to study tissue microstructure in vivo and completely noninvasively using magnetic resonance imaging (MRI) has the potential to radically change how we detect, monitor, and treat diseases, in particular the many neurod...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MRI-STRUCTURE
MRI Signal To Recover Unique Cerebral TissUe Response to cha...
158K€
Cerrado
TED2021-130758B-I00
APOYO DIGITAL A ESTUDIOS DE NEUROIMAGEN EN EL SISTEMA NACION...
102K€
Cerrado
TEC2009-14587-C03-02
BIOMARCADORES DE NEUROIMAGEN EN ENFERMEDADES NEURODEGENERATI...
70K€
Cerrado
TEC2009-14587-C03-01
NEUROBIN: BIOMARCADORES DE NEUROIMAGEN PARA ENFERMEDADES NEU...
108K€
Cerrado
TIN2015-73563-JIN
SEGMENTACION AUTOMATICA DE LAS ESTRUCTURAS CEREBRALES PARA S...
200K€
Cerrado
TIN2012-37483-C03-02
TOMOGRAFIA ELECTRONICA: COMPUTACION Y APLICACION EN NEUROBIO...
15K€
Cerrado
Información proyecto ADAMI
Duración del proyecto: 62 meses
Fecha Inicio: 2024-02-14
Fecha Fin: 2029-04-30
Líder del proyecto
UNIVERSITEIT ANTWERPEN
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The ability to study tissue microstructure in vivo and completely noninvasively using magnetic resonance imaging (MRI) has the potential to radically change how we detect, monitor, and treat diseases, in particular the many neurodegenerative diseases that affect our world’s aging population. Unfortunately, the MRI signal is a very indirect measure of microstructure, and the variety of contributing factors complicates a one-to-one association between the MRI measurements and the biological substrate. As a result, microstructural mapping is still a poorly understood and challenging inverse problem that often yields inconsistent and contradictory outcomes. In ADAMI, I will take the next leap in microstructure imaging by approaching the problem in a completely data-driven fashion as opposed to the state-of-the-art that is model-driven. This paradigm shift will enable me to turn the MRI scanner into a powerful in vivo microscope that can provide reliable information about tissue microstructure that closely matches the underlying cellular composition. Rather than relying only on a single source of contrast, I will exploit the versatility of MRI and use multiple, independent contrast mechanisms that will provide the necessary information to distinguish reliably between microscopic substrates. Rather than relying on preconceived models, I will use machine learning to learn the appropriate models directly from the data. Rather than performing a posteriori histological validation of these new microstructural models, I will acquire a priori histological data to directly inform this learning process, guaranteeing, for the first time, a close match between microstructural readouts obtained from MRI and invasive histology. Through these innovations, ADAMI will advance the field of medical imaging by introducing a groundbreaking data-driven approach to microstructure imaging which will significantly impact the understanding, diagnosis, and monitoring of brain diseases and beyond.