The ability to study tissue microstructure in vivo and completely noninvasively using magnetic resonance imaging (MRI) has the potential to radically change how we detect, monitor, and treat diseases, in particular the many neurod...
ver más
Descripción del proyecto
The ability to study tissue microstructure in vivo and completely noninvasively using magnetic resonance imaging (MRI) has the potential to radically change how we detect, monitor, and treat diseases, in particular the many neurodegenerative diseases that affect our world’s aging population. Unfortunately, the MRI signal is a very indirect measure of microstructure, and the variety of contributing factors complicates a one-to-one association between the MRI measurements and the biological substrate. As a result, microstructural mapping is still a poorly understood and challenging inverse problem that often yields inconsistent and contradictory outcomes. In ADAMI, I will take the next leap in microstructure imaging by approaching the problem in a completely data-driven fashion as opposed to the state-of-the-art that is model-driven. This paradigm shift will enable me to turn the MRI scanner into a powerful in vivo microscope that can provide reliable information about tissue microstructure that closely matches the underlying cellular composition. Rather than relying only on a single source of contrast, I will exploit the versatility of MRI and use multiple, independent contrast mechanisms that will provide the necessary information to distinguish reliably between microscopic substrates. Rather than relying on preconceived models, I will use machine learning to learn the appropriate models directly from the data. Rather than performing a posteriori histological validation of these new microstructural models, I will acquire a priori histological data to directly inform this learning process, guaranteeing, for the first time, a close match between microstructural readouts obtained from MRI and invasive histology. Through these innovations, ADAMI will advance the field of medical imaging by introducing a groundbreaking data-driven approach to microstructure imaging which will significantly impact the understanding, diagnosis, and monitoring of brain diseases and beyond.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.