A data driven multivariate approach to human mate preferences.
Human mate preferences can provide important insight into human social and sexual relationships; however, to date research on human mate preferences are typically based on sexual selection models derived from studies of non-human...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2021-123090NB-I00
INTEGRACION DE MODELADO ESTADISTICO DE SEÑAL Y DE APRENDIZAJ...
73K€
Cerrado
TIN2008-06582-C03-02
SECUENCIAS SIMBOLICAS: ANALISIS, APRENDIZAJE, MINERIA Y EVOL...
31K€
Cerrado
PrSc-HDBayLe
Provable Scalability for high-dimensional Bayesian Learning
1M€
Cerrado
GEMS
Genetically Evolving Models of Science
2M€
Cerrado
PAVE
Creating a Panoramic View of Emotion Communication
270K€
Cerrado
Información proyecto MULTIPREF
Duración del proyecto: 33 meses
Fecha Inicio: 2016-03-08
Fecha Fin: 2018-12-31
Líder del proyecto
UNIVERSITY OF GLASGOW
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
183K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Human mate preferences can provide important insight into human social and sexual relationships; however, to date research on human mate preferences are typically based on sexual selection models derived from studies of non-human species to identify candidate characteristics that may influence preferences, and then studies only assess one or two of these characteristics at a time. This is problematic as this does not reflect the multivariate nature of human mate choice in reality. To address these limitations, I propose a research project that uses data-driven approaches to identify characteristics important to human mate preferences that entirely avoids the problem of selecting candidate characteristics based on inappropriate theoretical models. I also propose using powerful new computational methods to develop the first multivariate model of human mate preferences. First, I will use state-of-the-art statistical techniques developed in evolutionary biology to identify facial, body, and personality characteristics important for human mate preferences. Once these characteristics have been identified, they will be used as input into a large, iterative, online study using a technique that simulates the effects of Darwinian evolution on preferences. This project directly addresses difficulties in the field and will develop the first multivariate model of human mate preferences that will drive future research in the field.