A CutFEM Paradigm for Surgical Guided Growth of Bone Joints
Many children suffer from bone deformities, which severely hinders their ability to walk. Some children may require invasive surgical treatment, such as cutting their bones, whilst others may recover their mobility through less in...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TIN2014-52033-R
SIMULACION DEL COMPORTAMIENTO BIOMECANICO DEL TEJIDO BLANDO...
175K€
Cerrado
DPI2013-46317-R
PERSONALIZACION DE IMPLANTES MEDIANTE MODELOS DE ELEMENTOS F...
83K€
Cerrado
BioMech-3D
SENIOR BIOMECHANICAL 3D MODELLING RESEARCHER
80K€
Cerrado
DPI2015-65123-R
AVANCES EN SIMULACION Y MODELADO GEOMETRICO DE FRACTURAS OSE...
141K€
Cerrado
iBeSuP
Towards the simulation of breast surgical lumpectomy and sur...
231K€
Cerrado
DPI2017-89816-R
MODELADO PERSONALIZADO DE LA RESPUESTA DEL TEJIDO OSEO DE PA...
67K€
Cerrado
Información proyecto CutGrow
Duración del proyecto: 34 meses
Fecha Inicio: 2019-04-12
Fecha Fin: 2022-02-28
Líder del proyecto
KOBENHAVNS UNIVERSITET
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
207K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Many children suffer from bone deformities, which severely hinders their ability to walk. Some children may require invasive surgical treatment, such as cutting their bones, whilst others may recover their mobility through less invasive treatments such as guided growth surgery. However, surgeons have difficulties choosing the best treatment options because there is no reliable tool to help them predict the post-operative evolution of bone joints. CutGrow aims to provide a numerical platform whereby bone growth will be predicted virtually. The platform will rely on a novel finite element technology, CutFEM, developed by the applicant, Dr. Claus, which circumvents the need for meshing complex geometries. This algorithmic concept will bestow numerical agility upon all steps of the simulation process, from acquiring patient-specific data to handling complex contact conditions between interacting bones, the latter being the domain of excellence of the host supervisor Prof. Erleben. In the first stage of CutGrow, a seamless and robust simulation pipeline in the specific context of bone joint mechanics and growth will be created. In a second stage, the simulation will be used as a basis to develop a unifying and highly versatile model for children’s bone growth, capable of easily handling a range of mathematical growth stimulus theories. Finally, we will specialize the developments to the context of guided bone growth and prove that the proposed modelling framework can reproduce clinical data gathered by MD Wong at Hvidovre Hospital. The CutGrow simulation environment has the potential to transform paediatric orthopaedic surgery, by providing researchers with an agile tool to investigate new treatment options virtually and to design new operation planning procedures based on reliable, physics based simulation technologies.