6G Terahertz Communications for Future Heterogeneous Wireless Network
With the fast development of electronic devices and computing technologies, various emerging applications (e.g., big data analysis, artificial intelligence and 3-dimensional (3D) media, Internet of things, etc.) have been entering...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TERRAMETA
TERahertz ReconfigurAble METAsurfaces for ultra-high rate wi...
6M€
Cerrado
SAILS-6G
Semantic-Aware Intelligent Localization and Sensing towards...
223K€
Cerrado
DIOR
DIOR Deep Intelligent Optical and Radio Communication Netw...
2M€
Cerrado
PID2021-122505OB-C33
SISTEMAS Y TECNOLOGIAS AVANZADOS PARA RADIO SOBRE FIBRA OPTI...
99K€
Cerrado
PID2019-104945GB-I00
TECNOLOGIAS RADIO PARA COMUNICACIONES UBICUAS EN LA EVOLUCIO...
133K€
Cerrado
PID2020-119173RB-C22
TECNICAS DE MEDIDA Y MODELOS AVANZADOS DE CANAL PARA LA DEFI...
64K€
Cerrado
Información proyecto 6G-TERAFIT
Duración del proyecto: 48 meses
Fecha Inicio: 2023-12-11
Fecha Fin: 2027-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
With the fast development of electronic devices and computing technologies, various emerging applications (e.g., big data analysis, artificial intelligence and 3-dimensional (3D) media, Internet of things, etc.) have been entering our society with significant amounts of data traffic. While mobile networks are already indispensable to our society for anywhere anytime connection, one main characteristic of future mobile networks (i.e., B5G: Beyond 5G) is the very huge amount of data, which requires very high throughput per devices (multiple Gbps, up to Tera bps: Tbps) and multiple Tbps per area efficiency (Tbps/km2). Though some disrupting 5G technologies may provide a few Gbps service, it is still not able to achieve hundreds of Gbps or Tbps rates. In the near future, the peak rate of mobile communication networks is expected to reach hundreds of Gbps or even Tbps rates, which requires either very high spectrum efficiency (e.g., much higher than 10 bits/s/Hz) in millimetre wave bands or very large bandwidth (e.g., more than 20GHz) . While the former is very challenging, the latter can be achieved in THz bands (roughly, 100GHz to 10THz). The design of ubiquitous access with very high rates in mobile and heterogeneous network (HetNet) environments is the key to the development of future mobile networks, and so the objective of this collaborative 6G-TERAFIT is to create a knowledge transfer between the researchers and the engineers who will contribute to the design and implementation of future B5G ultra-fast networks and create the pedestal for them to become potential leaders in the resulting scientific, technological, and industrial fields.
This project is committed to creating an excellent educational training platform that is multi-disciplinary and inter-sectoral in nature.