4DSpace integrated study for space weather at high latitudes
Ionosphere is the partially ionized, outermost part of the Earth’s atmosphere. Its dynamics is inherently complex and affected by dynamic conditions in the solar wind. In the polar regions, it is directly coupled to the Earth’s ma...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PGC2018-096774-B-I00
DETECCION, MONITORIZACION Y MODELADO DE IRREGULARIDADES IONO...
97K€
Cerrado
PLASMON
A new ground based data assimilative modeling of the Earth...
3M€
Cerrado
FRoST
The Foreshock and its Role in Solar Terrestrial relations
191K€
Cerrado
SOLSPANET
Solar and Space Weather Network of Excellence
1M€
Cerrado
TED2021-129357A-I00
LA CAPA DE PLASMA DE OXIGENO EN EL ENTORNO ESPACIAL TERRESTR...
190K€
Cerrado
WILISCME
The relationship between white light and in situ observation...
146K€
Cerrado
Información proyecto POLAR-4DSpace
Duración del proyecto: 74 meses
Fecha Inicio: 2020-03-03
Fecha Fin: 2026-05-31
Líder del proyecto
Innovasjon Norge
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Ionosphere is the partially ionized, outermost part of the Earth’s atmosphere. Its dynamics is inherently complex and affected by dynamic conditions in the solar wind. In the polar regions, it is directly coupled to the Earth’s magnetosphere and space plasma. The polar ionosphere is subject to the auroral particle precipitation, instabilities and turbulence, which all influence the energy transfer through the ionosphere and lead to plasma density irregularities which lead to scintillations of trans-ionospheric radio signals. Irregularities span over a large range of scales, from thousands of kilometers down to centimeters, making their investigation a highly challenging task. The state of ionosphere at high latitudes is a crucial aspect of the space weather, which has important impact on today’s society, in particular in the context of increasing shipping, aviation, and other operations in the Arctic. Understanding processes in the polar ionosphere, their technological impacts, and laying foundations for robust models for forecasting space weather effects are one of the major goals in space science. This project will determine the role of auroral particle precipitations and geomagnetic activity for the development of plasma irregularities at high latitudes, and their impacts on the global navigation satellite systems. Through an integrated approach, combining in-situ measurements by sounding rockets with novel multi-payloads, cutting-edge numerical simulations, and statistical studies with ground- and satellite-based observations at both hemispheres, it will provide groundbreaking understanding of plasma irregularities in the polar ionosphere, give insight into the energy transfer in the ionosphere, and lay foundations for the space weather models that will improve security of operations in the polar regions. The project is across scientific domains: it deals with the Earth’s Ionosphere, the near-Earth space environment, and fundamental processes in plasma physics.