3D Thin Walled Ceramic and Ceramic Metal Components using Electrolytic Plasma Pr...
3D Thin Walled Ceramic and Ceramic Metal Components using Electrolytic Plasma Processing
This proposal relates to the Proof of Concept stage investigation of exciting new findings in the ERC Advanced Grant ‘IMPUNEP’ project relating to the study and use of plasma-based processes. These findings offer significant advan...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto 3D Cer-Met
Duración del proyecto: 17 meses
Fecha Inicio: 2018-10-11
Fecha Fin: 2020-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
This proposal relates to the Proof of Concept stage investigation of exciting new findings in the ERC Advanced Grant ‘IMPUNEP’ project relating to the study and use of plasma-based processes. These findings offer significant advantages for the creation of complex 3D ceramic and ceramic-metal products at relatively low cost in an environmentally friendly manner. The potential applications of this new technology are very wide-ranging, and include the creation of new products as diverse as healthcare devices, MEMS and aero/automotive parts. Before we properly and fully identify the most promising applications, we need to investigate key aspects of the performance of materials created by this new method. This aspect wasn’t envisaged in the original proposal and involves research into the mechanical properties (especially the strength and elastic modulus) of these 3D parts and their response to deformation and dynamic displacements, as well as their physical (including electrical) properties. These components will be highly resistant to attack by aggressive (e.g. acidic) media as well as highly tolerant to both low (cryogenic) and high (combustion) temperatures. The expected applications opened up by this new method to produce ceramic and ceramic-metal components of complex shape are extensive. Hence the need for this Proof of Concept study, which will focus on validating the process for 3D ceramic-metal and ceramic parts and evaluating the mechanical, chemical, electrical and physical attributes of the 3D shapes, and will explore their potential applications in this pre-demonstration phase.