Innovating Works

3D-BRICKS

Financiado
3D Biofabricated high-perfoRmance dna-carbon nanotube dIgital electroniCKS
Silicon-based CMOS technology is approaching its performance limits, but the demand for more powerful computers — driven by rapid advances in applications such as the Internet of Things, big data and artificial intelligence (AI) —... Silicon-based CMOS technology is approaching its performance limits, but the demand for more powerful computers — driven by rapid advances in applications such as the Internet of Things, big data and artificial intelligence (AI) — remains. The discovery of various nanomaterials provides new opportunities to further develop information processing technology. Carbon nanotubes (CNTs) have, in particular, demonstrated excellent properties as a channel material in transistors. Computers based on CNT field-effect transistors (FETs) have been theoretically predicted to provide a power-performance improvement of ten times over computers based on Si-CMOS technology. However, the fabrication of high-performance CNT-nanoelectronics, and the realization of the full potential of CNTs, is highly challenging. A technological revolution would be a reliable approach to fabricate a new family of CNT-based devices that could enable aligned arrangement of the nanotubes avoiding the critical steps related to nanolithography. In particular, biofabrication using DNA-templated CNT arrays FETs has been demonstrated to further scale the alignment of CNTs within the FETs well beyond standard lithographic feasibility. 3D-BRICKS will raise this concept of integrated self-assembly CNT-nanocircuits to a completely new level by moving towards the third dimension. Indeed, the versatility of DNA nanotechnology will be the root for conceiving 3-dimensional (3D) CNT-FETs and CNT-nonvolatile memories. DNA nanotechnology will also enable to complement the CNT deposition with metallic connections, hence realizing a working circuit. This will reduce the foot-print of the final device while enhancing its efficiency, hence providing a breakthrough solution to realize the next-generation nanoelectronics. Our approach will enable the production of scalable biotemplated electronics that can be extended to multiple applications such as metamaterials, sensors, optoelectronics, and others. ver más
30/04/2026
IIT
3M€
Duración del proyecto: 35 meses Fecha Inicio: 2023-05-01
Fecha Fin: 2026-04-30

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-05-01
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 3M€
Líder del proyecto
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5