Innovating Works
HORIZON-JTI-CLEANH2-2022-02-04
Ammonia to Green Hydrogen: efficient system for ammonia cracking...
ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen at scale (>1,000 tonnes of hydrogen transported per day), especially across larger distances. Low carbon footprint, high energy density and easy storage and transportation are important key factors for their application. Amongst all liquid hydrogen carriers, ammonia has proven itself as a carbon free and sustainable candidate and, very importantly, it presents advantages of a one-way transport, in fact, ammonia does not need to be directly recovered and recycled after the dehydrogenation step (to release hydrogen). Moreover, even if safety and toxicity concerns have been raised, ammonia has been produced industrially for over 75 years, with a large existing infrastructure and offtake. However, further studies to assess the large-scale potential of ammonia as a hydrogen carrier are needed and energy efficiency and environmental impacts have to be carefully addressed.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio.
Número mínimo de participantes.
Esta ayuda financia Proyectos:

ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen at scale (>1,000 tonnes of hydrogen transported per day), especially across larger distances. Low carbon footprint, high energy density and easy storage and transportation are important key factors for their application. Amongst all liquid hydrogen carriers, ammonia has proven itself as a carbon free and sustainable candidate and, very importantly, it presents advantages of a one-way transport, in fact, ammonia does not need to be directly recovered and recycled after the dehydrogenation step (to release hydrogen). Moreover, even if safety and toxicity concerns have been raised, ammonia has been produced industrially for over 75 years, with a large existing infrastructure and offtake. However, further studies to assess the large-scale potential of ammonia as a hydrogen carrier are needed and energy efficiency and environmental impacts have to be carefully addressed.

Ammonia synthesis can be performed close to centralised hydrogen production sites, but their dehydrogenation needs to be easily obtained locally for different a... ver más

ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen at scale (>1,000 tonnes of hydrogen transported per day), especially across larger distances. Low carbon footprint, high energy density and easy storage and transportation are important key factors for their application. Amongst all liquid hydrogen carriers, ammonia has proven itself as a carbon free and sustainable candidate and, very importantly, it presents advantages of a one-way transport, in fact, ammonia does not need to be directly recovered and recycled after the dehydrogenation step (to release hydrogen). Moreover, even if safety and toxicity concerns have been raised, ammonia has been produced industrially for over 75 years, with a large existing infrastructure and offtake. However, further studies to assess the large-scale potential of ammonia as a hydrogen carrier are needed and energy efficiency and environmental impacts have to be carefully addressed.

Ammonia synthesis can be performed close to centralised hydrogen production sites, but their dehydrogenation needs to be easily obtained locally for different applications after transportation. Many technical and economic challenges related to dehydrogenation step and sustainability need to be overcome.

In order to bring ammonia cracking to the next stage of maturity project results are expected to contribute to all of the following outcomes:

Contribute to Europe technology leadership developing innovative reactors and catalysts for the dehydrogenation of ammonia as well as new integrated solution for heat management and hydrogen separation and purification;Reducing the use of critical raw materials in ammonia dehydrogenation reaction; Improving the economics of the ammonia dehydrogenation process;Develop new business models related to the use of hydrogen from ammonia for various applications, such as centralised and distributed power generation, shipping, heavy mobility, etc;Contributing to the understanding of Europe need in terms of infrastructure and regulation for the management of liquid hydrogen carriers;Foster the demonstration of the solutions developed in the project throughout Europe. Project results are expected to contribute to all of the following objectives of the Clean Hydrogen JU SRIA: (especially for Pillar 2: Hydrogen storage and distribution – Sub Pillar: liquid H2 carriers):

Develop a range of hydrogen carriers that will be used commercially to transport and store hydrogen while improving their roundtrip efficiency and lowering their cost;Contribute to the SRIA KPIs on hydrogen carrier delivery cost, for 3000km ship transfer (Targets: 2024 = 2.5 €/kg, 2030 = <2€/kg);Contribute to the SRIA KPIs on hydrogen carrier specific energy consumption (Targets: 2024 = 17kWh input/kgH2 recovered, 2030 = 12 kWh input/kgH2 recovered). This figure encompasses the energy consumption for the production of ammonia from hydrogen, for which the project shall retrieve the value from the state of the art.
Scope:State of the art systems for H2 recovery from ammonia require reaction units and catalysts operating at high temperatures (550-800°C) for complete ammonia conversion and are principally based on fired and heat transfer limited cracker design. The application of heat sources to deliver the required thermal energy is a restricting challenge for ammonia as a reliable Hydrogen carrier. Moreover, components thermal losses, power consumed by pumps, and loss of hydrogen due to imperfect recovery in conventional separation and purification section represent other important issues to address for the next generation ammonia dehydrogenation plants. In this regard, proposals should contain a set of principles applied in catalyst and reactor design, which can bring significant benefits in terms of process intensification and chain efficiency, lower capital and operating expenses, higher quality of products, less waste and improved process safety. Therefore, it is of interest to develop and demonstrate, at prototype scale, low-cost catalysts and integrated reactors that can deliver hydrogen at a high rate per volume from ammonia dehydrogenation at relatively low temperatures and high conversion so that zero-carbon pure hydrogen can be transported at long distances.

More in detail proposals should include:

Development of catalyst (CRMs free catalysts or reduction of CRMs use should be considered) and reactor for the ammonia dehydrogenation at lower temperature compared to state of the art, capable to: ensuring the highest possible ammonia conversion (>98%) reducing the downstream cleaning/recycling steps;improving the overall thermal efficiency of the ammonia dehydrogenation step;providing high reliability, ease of operation, and cost-effectiveness to hydrogen production. A demonstration system, running for at least 500 hours and producing at least 10 kg H2/day at atmospheric pressure;Demonstration of hydrogen fuel quality (according to ISO 14687:2019) from dehydrogenation of the liquid hydrogen carrier in relevant conditions; Demonstration of Scalability of the developed system to large-scale production (equivalent to the 100 tH2/day) for long distance transportation;A Life Cycle Assessment of the developed system in the frame of the whole supply chain: ammonia inventory and make-up, (de)hydrogenation steps, temporary storage, shipping, CRM net consumption, etc;Techno-economic analysis for the scalability of the developed system to large-scale production for long distance transportation, i.e. 1000 t H2/day, including centralised hydrogenation plant, storage, shipping and distributed dehydrogenation plants. In order for the proposal to reach the expected outcome, the deliverables should be disseminated at the end of the proposal to the hydrogen mobility and hydrogen refuelling infrastructure sectors and relevant working groups of the standardisation technical committee’s such as ISO TC 197, CEN TC 268, including the hydrogen purity standard ISO14687 and EN17124, related to hydrogen fuel sampling.

Proposals are expected to address sustainability and circularity aspects.

Activities are expected to start at TRL 3 and achieve TRL 5 by the end of the project.

The conditions related to this topic are provided in the chapter 2.2.3.2 of the Clean Hydrogen JU 2022 Annual Work Plan and in the General Annexes to the Horizon Europe Work Programme 2021–2022 which apply mutatis mutandis.


ver menos

Temáticas Obligatorias del proyecto: Temática principal: Mechanical engineering Chemical engineering Materials engineering

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño por participante: Duración:
Requisitos técnicos: ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen at scale (>1,000 tonnes of hydrogen transported per day), especially across larger distances. Low carbon footprint, high energy density and easy storage and transportation are important key factors for their application. Amongst all liquid hydrogen carriers, ammonia has proven itself as a carbon free and sustainable candidate and, very importantly, it presents advantages of a one-way transport, in fact, ammonia does not need to be directly recovered and recycled after the dehydrogenation step (to release hydrogen). Moreover, even if safety and toxicity concerns have been raised, ammonia has been produced industrially for over 75 years, with a large existing infrastructure and offtake. However, further studies to assess the large-scale potential of ammonia as a hydrogen carrier are needed and energy efficiency and environmental impacts have to be carefully addressed. ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen at scale (>1,000 tonnes of hydrogen transported per day), especially across larger distances. Low carbon footprint, high energy density and easy storage and transportation are important key factors for their application. Amongst all liquid hydrogen carriers, ammonia has proven itself as a carbon free and sustainable candidate and, very importantly, it presents advantages of a one-way transport, in fact, ammonia does not need to be directly recovered and recycled after the dehydrogenation step (to release hydrogen). Moreover, even if safety and toxicity concerns have been raised, ammonia has been produced industrially for over 75 years, with a large existing infrastructure and offtake. However, further studies to assess the large-scale potential of ammonia as a hydrogen carrier are needed and energy efficiency and environmental impacts have to be carefully addressed.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Gastos relacionados con el personal que trabaja directamente en el proyecto basado en las horas efectivas dedicadas, basado en el coste empresa y ratios fijos para determinados empleados como los dueños de la compañía.
Subcontracting costs.
Pagos a terceros externos para realizar tareas específicas que no pueden ser realizadas por los beneficiarios del proyecto.
Purchase costs.
Incluyen la adquisición de equipos, amortizaciones, material, licencias u otros bienes y servicios necesarios para la ejecución del proyecto
Other cost categories.
Gastos diversos como costes financieros, certificados de auditoría o participación en eventos no cubiertos por otras categorías
Indirect costs.
Gastos generales no asignables directamente al proyecto (como electricidad, alquiler u oficina), calculados como un 25% fijo sobre los costes directos elegibles (excepto subcontratación).
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Los componentes que integran determinado proyecto de innovación han sido identificados y se busca establecer si dichos componentes individuales cuentan con las capacidades para actuar de manera integrada, funcionando conjuntamente en un sistema. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-JTI-CLEANH2-2022-2 Ammonia to Green Hydrogen: efficient system for ammonia cracking for application to long distance transportations ExpectedOutcome:Liquid hydrogen carriers will play a significant role in diversifying Europe’s energy supply corridor, transporting hydrogen...
Sin info.
HORIZON-JTI-CLEANH2-2022-03-02 Innovative and optimised MEA components towards next generation of improved PEMFC stacks for heavy duty vehicles
en consorcio: ExpectedOutcome:Hydrogen as fuel in transportation has significant advantages compared to pure battery electric propulsion, especially for h...
Cerrada | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-01-08 Integration of multi-MW electrolysers in industrial applications
en consorcio: ExpectedOutcome:This flagship[1] project is expected to pave the way for further large-scale integration of electrolyser systems in industri...
Cerrada | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-02-02 Hydrogen and H2NG leak detection for continuous monitoring and safe operation of HRS and future hydrogen/H2NG networks
en consorcio: ExpectedOutcome:The growing attention on methane emissions is also triggering a debate around the safety of hydrogen. Although different in...
Cerrada | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-05-04 Development of validated test methods and requirements for measuring devices intended for measuring NG/H2 mixtures
en consorcio: ExpectedOutcome:No validated test methods for measuring devices used in the distribution and transmission of hydrogen-enriched natural gas c...
Cerrada | Próxima convocatoria prevista para el mes de
HORIZON-JTI-CLEANH2-2022-04-01 Design and industrial deployment of innovative manufacturing processes for fuel cells and fuel cell components
en consorcio: ExpectedOutcome:Fuel cells offer the highest electrical efficiency for conversion of chemically stored energy. They can significantly contri...
Cerrada | Próxima convocatoria prevista para el mes de