Innovating Works

H2020

Cerrada
HORIZON-CL3-2021-CS-01-04
HORIZON-CL3-2021-CS-01-04: Scalable privacy-preserving technologies for cross-border federated computation in Europe involving personal data
ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes:
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 21-10-2021.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes:

Improved scalable and reliable privacy-preserving technologies for federated processing of personal data and their integration in real-world systemsMore user-friendly solutions for privacy-preserving processing of federated personal data registries by researchersImproving privacy-preserving technologies for cyber threat intelligence and data sharing solutionContribution to promotion of GDPR compliant European data spaces for digital services and research (in synergy with topic DATA-01-2021 of Horizon Europe Cluster 4)Strengthened European ecosystem of open source developers and researchers of privacy-preserving solutions The proposal should provide appropriate indicators to measure its progress and specific impact.


Scope:Using big data for digital services and scientific research brings about new opportunities and challenges. For example, machine learning methods process medical and behavioural data for finding causes and explanations for diseases or health risks. However, a large amount of this data is personal data. Leakage or abuse of this kind of dat... ver más

ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes:

Improved scalable and reliable privacy-preserving technologies for federated processing of personal data and their integration in real-world systemsMore user-friendly solutions for privacy-preserving processing of federated personal data registries by researchersImproving privacy-preserving technologies for cyber threat intelligence and data sharing solutionContribution to promotion of GDPR compliant European data spaces for digital services and research (in synergy with topic DATA-01-2021 of Horizon Europe Cluster 4)Strengthened European ecosystem of open source developers and researchers of privacy-preserving solutions The proposal should provide appropriate indicators to measure its progress and specific impact.


Scope:Using big data for digital services and scientific research brings about new opportunities and challenges. For example, machine learning methods process medical and behavioural data for finding causes and explanations for diseases or health risks. However, a large amount of this data is personal data. Leakage or abuse of this kind of data and potential privacy infringement (e.g. attribute disclosure or membership inference) risks are a cybersecurity threat to individuals, society and economy and an impediment for further developing data spaces involving personal data. Vice versa, adequate protection of this data according to the GDPR can also prevent its full utilization for society. Advanced privacy-preserving computation techniques such as homomorphic encryption, secure multiparty computation, and differential privacy are being researched and have proven promising to address these challenges. However, further research is required to ensure their applicability in real-world use case scenarios. For example, fully homomorphic encryption is not practically applicable in many cases and secure multi-party computation often imposes special infrastructural requirements.

Building on research and innovation in the area of privacy-preserving computation, proposals should address scalability and reliability of privacy-preserving technologies in realistic problem areas and take integration with existing infrastructures and traditional security measures (e.g. access control) into account. They should respond to users’ needs, e.g. for research and digital services in access and data management for citizens geared towards their own profiles (incl. dynamic personalised recommendations for improved cybersecurity) or in personalised medicine, taking into account the gender dimension where relevant. They should further address the legacy variation in personal data types and data models across different organisations in the same business sector and/or across different potential application sectors. A proposed solution should include validation or piloting of privacy-preserving computation in realistic federated data infrastructures and more specifically European data spaces involving personal data (e.g. the EU heath data space). It should be guided by the EU’s high standards concerning the right to privacy, protection of personal data, and the protection of fundamental rights in the digital age. It should ensure, by-design, compliance with data regulations and specifically the GDPR. Wherever possible, solutions should be developed as open source software.

Consortia should bring together interdisciplinary expertise and capacity covering the supply and the demand side, i.e. industry, service providers and end-users. Participation of SMEs is strongly encouraged. Legal expertise should also be incorporated to assess and ensure compliance of the technical project results with data regulations and the GDPR.


Cross-cutting Priorities:EOSC and FAIR data


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes: ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes:
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.
HORIZON-CL3-2021-CS-01 Scalable privacy-preserving technologies for cross-border federated computation in Europe involving personal data ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes: Improved scalable and reliable privacy-pres...
Sin info.
HORIZON-CL3-2021-CS-01-01 Dynamic business continuity and recovery methodologies based on models and prediction for multi-level Cybersecurity
en consorcio: ExpectedOutcome:Projects are expected to contribute to all of the following expected outcomes: Advanced self-healing disaster recovery and...
Cerrada hace 3 años | Próxima convocatoria prevista para el mes de
HORIZON-CL3-2021-CS-01-02 Improved security in open-source and open-specification hardware for connected devices
en consorcio: ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes: Reduced security threats of open source har...
Cerrada hace 3 años | Próxima convocatoria prevista para el mes de
HORIZON-CL3-2021-CS-01-04 Scalable privacy-preserving technologies for cross-border federated computation in Europe involving personal data
en consorcio: ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes: Improved scalable and reliable privacy-pres...
Cerrada hace 3 años | Próxima convocatoria prevista para el mes de
HORIZON-CL3-2021-CS-01-03 AI for cybersecurity reinforcement
en consorcio: ExpectedOutcome:Projects are expected to contribute to some of the following expected outcomes: Reinforced cybersecurity using AI technolog...
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de
HORIZON-CL3-2021-CS-01-03 Transition towards Quantum-Resistant Cryptography
Cerrada hace 54 años | Próxima convocatoria prevista para el mes de