Innovating Works

H2020

Cerrada
HORIZON-INFRA-2021-TECH-01-01
Interdisciplinary digital twins for modelling and simulating complex phenomena at the service of research infrastructure communities
ExpectedOutcome:Research infrastructures are not only thematically very diverse but also in terms of size, ranging from the long tail of science, often characterised by individual laboratories or small groups of researchers, to large, “big science” collaborations. Scientists and researchers, including the long-tail of science, lack capabilities enabling complex simulations, combining simulations with observations and dealing with very large volumes of diverse data from various and distributed sources. The availability of high-quality Digital Twins[1] across a wide range of thematic applications could fill this gap.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 23-09-2021.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Research infrastructures are not only thematically very diverse but also in terms of size, ranging from the long tail of science, often characterised by individual laboratories or small groups of researchers, to large, “big science” collaborations. Scientists and researchers, including the long-tail of science, lack capabilities enabling complex simulations, combining simulations with observations and dealing with very large volumes of diverse data from various and distributed sources. The availability of high-quality Digital Twins[1] across a wide range of thematic applications could fill this gap.

Project results are expected to contribute to all the following expected outcomes:

availability of a pre-operational prototype of an interdisciplinary Digital Twin, using a combination of the latest digital technologies, relevant to addressing challenges where multi-disciplinarity is the defining element of complexity;availability of latest modelling and prediction technologies in a number of different areas widely serving research communities and supporting interoperability of data and software, integration and collaboration across different sc... ver más

ExpectedOutcome:Research infrastructures are not only thematically very diverse but also in terms of size, ranging from the long tail of science, often characterised by individual laboratories or small groups of researchers, to large, “big science” collaborations. Scientists and researchers, including the long-tail of science, lack capabilities enabling complex simulations, combining simulations with observations and dealing with very large volumes of diverse data from various and distributed sources. The availability of high-quality Digital Twins[1] across a wide range of thematic applications could fill this gap.

Project results are expected to contribute to all the following expected outcomes:

availability of a pre-operational prototype of an interdisciplinary Digital Twin, using a combination of the latest digital technologies, relevant to addressing challenges where multi-disciplinarity is the defining element of complexity;availability of latest modelling and prediction technologies in a number of different areas widely serving research communities and supporting interoperability of data and software, integration and collaboration across different scientific domains, disciplines and across the different research infrastructures involved;a robust framework enabling Researchers to ensure the quality, reliability, verifiability of the data, information and outputs of such Digital Twins and to exploit to the maximum the existing and new data made available through the Common European Data Spaces and the European Open Science Cloud.
Scope:Actions should develop digital twins that provide advanced modelling, simulation and prediction capabilities to RIs and their research communities through a convergent use of advanced digital technologies such as high performance computing, software, AI methods and big data analytics.

With the advent of big data analytics and supercomputing, AI methods have the potential to allow exploiting the full potential of simulations and observations at significantly enhanced scales and to substantially increase the value, which can be extracted from investments into digital infrastructures and hardware. This fusion of models and real-time data is of crucial importance in many scientific areas, which – due to the complexity of the underlying phenomena – are heavily dependent on converging traditional modelling with the increasing amount of real-time data in order to arrive at more accurate present-state assessments and predictions (e.g. high energy physics, astrophysics, environmental research, security applications, materials research, resource efficiency, econometrics, population dynamics and related global changes).

Achieving this will require a co-design approach with user communities. Target should be the development of more integrated systems and a consistent set of standard methods and protocols in the areas of (a) model and data fusion for optimal synergy between observations and models, including provisions to include information from the entire digital continuum (from smart sensors, IoT, big data to citizen science type of information, high-performance computing; and (b) visualisation and artificial intelligence based knowledge generation from spatio-temporal information.

Given the emerging nature of the Digital Twin concept as applied to more complex phenomena, work should also cover the development of quality measures and trust, development of standard quality mapping and indicators for appropriately communicating differences in qualities of inputs and outputs from digital twins, addressing issues such as data and model pedigree, accuracy and lack of knowledge.

In addition to addressing pertinent priority areas in an interdisciplinary manner, proposals should also demonstrate the following:

Deliver a breakthrough in terms of accuracy and realismOptimally fuse observations and modelsIntegrate downstream sectors at the source of data production (adjacent science sectors)Include a rigorous handling of quality and confidence of informationDevelop capabilities of the new digital continuum enabling research communities to continuously learn and update themselves from data and information originating from different sources Work under this topic should reach a sufficiently high TRL level (6-7) to be considered for integration into operational activities of for example existing research infrastructures, the EOSC platform, and undertaken in related fields.

Work under this topic should link to relevant actions, when appropriate, under Digital Europe Programme (e.g. Destination Earth).

In this topic the integration of the gender dimension (sex and gender analysis) in research and innovation content is not a mandatory requirement.


Cross-cutting Priorities:EOSC and FAIR data


[1]A Digital Twin is defined as a digital replica of a living or a non-living physical entity.

ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:
Empresas Micro, Pequeña, Mediana, Grande
Centros Tecnológicos
Universidades
Organismos públicos

Características del Proyecto

Requisitos de diseño: Duración: Requisitos técnicos: ExpectedOutcome:Research infrastructures are not only thematically very diverse but also in terms of size, ranging from the long tail of science, often characterised by individual laboratories or small groups of researchers, to large, “big science” collaborations. Scientists and researchers, including the long-tail of science, lack capabilities enabling complex simulations, combining simulations with observations and dealing with very large volumes of diverse data from various and distributed sources. The availability of high-quality Digital Twins[1] across a wide range of thematic applications could fill this gap. ¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. leer más.
TRL esperado:
Estadísticas proyectos financiados: Te facilitamos algunas estadísticas de los últimos 6 proyectos tramitados conocidos por categoría de empresa, porcentaje y presupuesto medio.

Categoria

%

Presupuesto medio

Micro

11%

0€

Mediana

11%

0€

Grande

78%

0€

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Condiciones: No existe condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea pero en los últimos 6 meses la línea ha concecido
Total concedido en los últimos 6 meses.
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.