Innovating Works

H2020

Cerrada
HORIZON-SESAR-2022-DES-IR-01-W...
Industrial Research & Validation for Artificial Intelligence for Aviation
ExpectedOutcome:Project results are expected to contribute to the following expected outcomes.
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 13-10-2022.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Project results are expected to contribute to the following expected outcomes.

Environment. AI will enable the optimisation of aircraft trajectories, potentially reducing the aviation environmental footprint.Capacity. AI will play a fundamental role in aviation/ATM to address airspace capacity shortages, enabling dynamic configuration of the airspace and allowing dynamic spacing separation between aircraft.Cost-efficiency. AI will enrich aviation datasets with new types of datasets, unlocking air–ground AI-based applications, fostering data-sharing and building up an inclusive AI aviation–ATM partnership. This will support decision-makers, pilots, ATCOs and other stakeholders, bringing benefits in cost-efficiency by increasing ATCO productivity (reducing workload and increasing complexity capabilities).Operational efficiency. Increasing predictability will be a key function of AI, as it will enable traffic predictions and forecasts that will boost punctuality.Safety. Safety science will need to evolve to cope with the safety challenges posed by the introduction of ML. Current safety levels will be at least maintained using this technology.Security. AI w... ver más

ExpectedOutcome:Project results are expected to contribute to the following expected outcomes.

Environment. AI will enable the optimisation of aircraft trajectories, potentially reducing the aviation environmental footprint.Capacity. AI will play a fundamental role in aviation/ATM to address airspace capacity shortages, enabling dynamic configuration of the airspace and allowing dynamic spacing separation between aircraft.Cost-efficiency. AI will enrich aviation datasets with new types of datasets, unlocking air–ground AI-based applications, fostering data-sharing and building up an inclusive AI aviation–ATM partnership. This will support decision-makers, pilots, ATCOs and other stakeholders, bringing benefits in cost-efficiency by increasing ATCO productivity (reducing workload and increasing complexity capabilities).Operational efficiency. Increasing predictability will be a key function of AI, as it will enable traffic predictions and forecasts that will boost punctuality.Safety. Safety science will need to evolve to cope with the safety challenges posed by the introduction of ML. Current safety levels will be at least maintained using this technology.Security. AI will make it possible to stay cyber-resilient in the face of new technologies and threats; the objective is to maintain a high level of security.
Scope:To achieve the expected outcomes, all or some of the following should be addressed.

AI-powered applications for higher levels of automation. This will involve the development of AI-powered applications supporting the transition to automation level 4 (R&I needs: trustworthy AI-powered ATM environment; AI for prescriptive aviation). It includes, for example, the following features. AI-powered applications supporting next generation ATC platforms. The research will involve the development of innovative AI applications and advanced HMI for ground systems. This includes support tools for complex operations as well as for the safe integration of new entrant aircraft types (i.e. UAVs, supersonic aircraft, hybrid and fully electric aircraft) into an increasingly busy, heterogeneous and complex traffic mix.AI-powered applications supporting next generation airborne platforms. The research will involve the development of intelligent augmentation tools enabling autonomous operations (e.g. vision-based navigation or trajectory optimisation). AI development infrastructure and services. This relates to the development of an appropriate aviation/ATM AI infrastructure supporting AI-enabled applications, with the required software development processes, using robust architectures for ATC systems to provide ATCOs and pilots with a good level of confidence in automated decision-aiding tools (R&I needs: trustworthy AI-powered ATM environment; AI for prescriptive aviation; AI Improved datasets for better airborne operations). It includes, for example, the following features. Cloud infrastructure and services. The research will involve the development of an AI-powered cloud infrastructure and services for automation level 4 and above. This will include the development of ATM processes from which analysis and prediction are particularly likely to benefit.Trustworthiness and explainability. The research will involve the development of new methodologies for the validation and certification of advanced automation, including in relation to cybersecurity that ensures transparency, legal aspects, and robustness and stability under all conditions. The methodologies should take into full consideration a future ATM environment built on multiple AI algorithms, a system of systems with a human-centric approach. They should also cover abnormal situation management. AI-powered digital assistants. With a view to achieving automation level 4, this element will involve the development of human–machine joint cognitive systems in which a digital assistant proposes the best possible options to the human (with regard to flows, sequences, safety nets, etc.) and solves complex situations using machine-to-machine communication (R&I need: human–AI collaboration: digital assistants). It includes, for example, the following features. Airborne digital assistant. The results of the research will support pilots and reduce their workload (e.g. by automating non-critical tasks and adapting the HMI during operations). This is a first step towards introducing the artificial co-pilot necessary for future operations such as single-pilot operations.Ground digital assistant. The research will contribute to increasing ground operators’ (e.g. ATCOs’) capabilities during complex scenarios and reducing workload in order to allow them to focus on high-added-value activities and strategic planning, for example by proposing the best possible options to the controller (with regard to flows, sequences, safety nets, etc.) while solving complex trajectory situations using machine-to-machine communication between airspace users. AI-based human operator support tools that ensure the safe integration of new entrant aircraft types into an increasingly busy, heterogeneous and complex traffic mix (i.e. UAVs, supersonic aircraft, hybrid and fully electric aircraft) should be developed.Air–ground synchronisation. The research will involve the development of air–ground applications to automatically negotiate trajectory changes and achieve the best possible air traffic patterns (for environmental sustainability, safety, etc.).Intelligent training systems. This covers the design and implementation of intelligent systems to perform automated ATCO training, including the use of AI-based techniques to evaluate actions and enhance skills in a tailored fashion.
ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:
Empresas Micro, Pequeña, Mediana, Grande
Centros Tecnológicos
Universidades
Organismos públicos

Características del Proyecto

Requisitos de diseño: Duración: Requisitos técnicos: ExpectedOutcome:Project results are expected to contribute to the following expected outcomes. ¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. leer más.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Condiciones: No existe condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.