Innovating Works

H2020

Cerrada
HORIZON-CL5-2022-D6-01-03
HORIZON-CL5-2022-D6-01-03: Human behavioural model to assess the performance of CCAM solutions compared to human driven vehicles (CCAM Partnership)
ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes:
Sólo fondo perdido 0 €
Europeo
Esta convocatoria está cerrada Esta línea ya está cerrada por lo que no puedes aplicar. Cerró el pasado día 12-01-2022.
Se espera una próxima convocatoria para esta ayuda, aún no está clara la fecha exacta de inicio de convocatoria.
Por suerte, hemos conseguido la lista de proyectos financiados!
Presentación: Consorcio Consorcio: Esta ayuda está diseñada para aplicar a ella en formato consorcio..
Esta ayuda financia Proyectos:

ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes:

A robust and scalable reference model of human driving behaviour:

Replicating the full performance spectrum of human drivers, which allows comparing the performance of an automated driving system in a specific situation to the human driver population. This serves as a basis to define the required safety level of CCAM systems and to take decisions on validation requirements in type approval schemes. The model will also help to define fair assessment criteria in consumer testing campaigns relative to human-driven vehicles and for the safety verification of CCAM systems in industrial development processes.Serving as a reference for the automotive industry and its R&I partners to design human-like and therefore easily predictable and acceptable behaviour of automated driving functions in mixed traffic.Helping the automotive industry, its R&I partners, certification bodies and consumer testing organisations to realistically represent the behaviour of other human-driven vehicles in the (virtual) simulation of mixed traffic. Virtual testing shorte... ver más

ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes:

A robust and scalable reference model of human driving behaviour:

Replicating the full performance spectrum of human drivers, which allows comparing the performance of an automated driving system in a specific situation to the human driver population. This serves as a basis to define the required safety level of CCAM systems and to take decisions on validation requirements in type approval schemes. The model will also help to define fair assessment criteria in consumer testing campaigns relative to human-driven vehicles and for the safety verification of CCAM systems in industrial development processes.Serving as a reference for the automotive industry and its R&I partners to design human-like and therefore easily predictable and acceptable behaviour of automated driving functions in mixed traffic.Helping the automotive industry, its R&I partners, certification bodies and consumer testing organisations to realistically represent the behaviour of other human-driven vehicles in the (virtual) simulation of mixed traffic. Virtual testing shortens development cycles and accelerates the implementation of CCAM technologies.
Scope:Statistical data available today gives a good idea of overall human driving, vehicle and infrastructure performance in terms of safety. However, evidence is missing on the precise performance of humans in the variety of specific situations that might be critical for automated driving systems. The variability of human behaviour and performance with factors like gender, cultural and ethnic background, ageing, diseases, driving experience, mental workload or fatigue makes the acquisition of such evidence a very challenging task. External factors such as diverse weather and lighting conditions play a role in this context, as well. Data on the dependence of human driving behaviour from such factors is partly available from previous research, but not sufficiently broken down to the level of specific driving situations.

Available software modules to simulate human driving behaviour only cover specific aspects of human driving performance so far and do not cover the full spectrum of drivers with statistical data on the probability of certain behavioural patterns.

Therefore, proposed actions have to develop a probabilistic human behavioural model with the potential to cover all relevant aspects of human driving performance as well as the broad spectrum of drivers and influencing factors. A methodology will be needed to extract consistent data on human driving performance from different data sources (e.g. real traffic, simulator tests) and collect such data with the long-term objective of fully depicting the large variance of human driving behaviour in different situations, while respecting gender, age and other factors like disabilities and diversity criteria. Proposals should calibrate the parameters of the model with the help of this data, and develop a corresponding validation concept based on real-world experiments. Potential ethical issues will have to be considered, as tests with humans need to be carried out and their personal data will have to be captured. The model should be transparent, independent from proprietary software tools and easy to use. It should be validated at least for selected fields of application with the perspective of extending these fields of application gradually and also simulating human behaviour in future scenarios of mixed traffic.

In order to achieve the expected outcomes, international cooperation is advised, in particular with projects or partners from the US, Japan, Canada, South Korea, Singapore, Australia.

This topic implements the co-programmed European Partnership on ‘Connected, Cooperative and Automated Mobility’ (CCAM).


Specific Topic Conditions:Activities are expected to achieve TRL 4 by the end of the project – see General Annex B.




Cross-cutting Priorities:Co-programmed European PartnershipsDigital AgendaInternational CooperationArtificial IntelligenceEOSC and FAIR data


ver menos

Temáticas Obligatorias del proyecto: Temática principal:

Características del consorcio

Ámbito Europeo : La ayuda es de ámbito europeo, puede aplicar a esta linea cualquier empresa que forme parte de la Comunidad Europea.
Tipo y tamaño de organizaciones: El diseño de consorcio necesario para la tramitación de esta ayuda necesita de:

Características del Proyecto

Requisitos de diseño: Duración:
Requisitos técnicos: ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes: ExpectedOutcome:Project results are expected to contribute to all of the following expected outcomes:
¿Quieres ejemplos? Puedes consultar aquí los últimos proyectos conocidos financiados por esta línea, sus tecnologías, sus presupuestos y sus compañías.
Capítulos financiables: Los capítulos de gastos financiables para esta línea son:
Personnel costs.
Subcontracting costs.
Purchase costs.
Other cost categories.
Indirect costs.
Madurez tecnológica: La tramitación de esta ayuda requiere de un nivel tecnológico mínimo en el proyecto de TRL 4:. Es el primer paso para determinar si los componentes individuales funcionarán juntos como un sistema en un entorno de laboratorio. Es un sistema de baja fidelidad para demostrar la funcionalidad básica y se definen las predicciones de rendimiento asociadas en relación con el entorno operativo final. + info.
TRL esperado:

Características de la financiación

Intensidad de la ayuda: Sólo fondo perdido + info
Fondo perdido:
0% 25% 50% 75% 100%
Para el presupuesto subvencionable la intensidad de la ayuda en formato fondo perdido podrá alcanzar como minimo un 100%.
The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations. The funding rate for RIA projects is 100 % of the eligible costs for all types of organizations.
Garantías:
No exige Garantías
No existen condiciones financieras para el beneficiario.

Información adicional de la convocatoria

Efecto incentivador: Esta ayuda no tiene efecto incentivador. + info.
Respuesta Organismo: Se calcula que aproximadamente, la respuesta del organismo una vez tramitada la ayuda es de:
Meses de respuesta:
Muy Competitiva:
No Competitiva Competitiva Muy Competitiva
No conocemos el presupuesto total de la línea
Minimis: Esta línea de financiación NO considera una “ayuda de minimis”. Puedes consultar la normativa aquí.

Otras ventajas

Sello PYME: Tramitar esta ayuda con éxito permite conseguir el sello de calidad de “sello pyme innovadora”. Que permite ciertas ventajas fiscales.